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ABSTRACT

Evolution of belief systems has always been in focus of cognitive research. In this paper we 

delineate a new model describing belief systems as a network of statements considered true. 

Testing the model a small number of parameters enabled us to reproduce a variety of well-

known mechanisms ranging from opinion changes to development of psychological 

problems. The self-organizing opinion structure showed a scale-free degree distribution. The 

novelty of our work lies in applying a convenient set of definitions allowing us to depict 

opinion network dynamics in a highly favorable way, which resulted in a scale-free belief 

network. As an additional benefit, we listed several conjectural consequences in a number of 

areas related to thinking and reasoning.
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Modeling belief systems with scale-free networks

Perception and abstract thinking are core areas of cognitive research with extensive literature 

on fundamental models of human cognition. In the current article we confine the discourse to 

theories about abstract thinking. The system we developed aims to give account of conscious 

opinion-arranging processes. For a clear presentation of our model first we have to draft 

relevant traits of two major knowledge representation theories: the classical propositional 

model (see, e.g., Pylyshyn, (1973)) and the connectionist alternative (Rumelhart and 

McClelland (1986), for a review see Clark (1993)). Throughout the introduction we will 

indicate similarities and differences of the “historical” models and our conception.

The well known classical propositional idea considers knowledge as a list of statements. 

Other types of knowledge like pictures or skills are omitted. This approach has widely been 

criticized and raised heated debates since the inception of modern cognitive science. We do 

not interfere in disputes about existing types of knowledge: we ask questions about opinion

systems that are characteristically propositional. Our model deals with concrete statements: 

factual, emotion-based or other types of beliefs that we can represent with sentences are 

subject to our investigations. Obviously, we analyze a very high level of human cognition 

(similarly to e.g. artificial intelligence research) by scrutinizing only propositional belief 

systems and their evolution.

Similarly to classical investigations and controversially to the uniform connectionist 

system, we start the analysis when environmental inputs are translated to statements. All 

inputs are considered homogeneous in the sense that there is no distinction between direct 

knowledge (about tangible objects) and indirect knowledge (about intangible, abstract 

objects) (Russel, 2001).

Statements in our model are organized into a network. While statements considered true

are the points, links are logical connections or associations that are either positive (+1), 

negative (−1), or neutral (0). These weights are the only attributes of the undirected links.

Rules of the structuring (automatic processes like in connectionist networks) are given: 

linking takes place on a probabilistic basis (for the need of a probabilistic system see Pléh

(1998)). Points with a great number of connections strongly attract new links. The evolving 

network structure affects the way new statements are integrated or rejected and the further 

evolution of the belief network. Linking processes are decomposed into time steps. The 

stressed importance of network structure and time may recall connectionist theories, while the 
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sequential mechanism used (single processes in time flow) is similar to the classical 

propositional idea.

We agree that symbolic and connectionist representations complement each other 

(Eysenck & Keane, 2005). While classically knowledge was conceived as a list of statements 

and connectionists contended that it was encoded in network patterns (and points were 

deemed to be meaningless), we claim that it is fruitful to use a network of statements for a 

representation of opinion systems.

Let us declare at the outset that our model is a theoretical construct. There is at present no 

unequivocal proof for its relevance that will satisfy all skeptics. Nor is it obvious what 

“conclusive” evidence could be obtained. Although we accept that none of the examples by 

itself proves the existence of the phenomenon, we hope that when they are taken together –

like weak fibers woven into a rope – the total structure will bear weight.

THE MODEL

Having seen the basic context, we outline the model in two parts. First we draft the main

definitions and static parameters, then dynamic parameters and the mechanism of changes are

presented.

Definitions, static parameters

Definition 1: A network is a complex system of vertices (or points) and links.

Definition 2: A vertex (or point) is a statement considered true.

Definition 3: A link is a logical connection or any kind of association.

The first definition is unambiguous, but two short comments can be helpful regarding 

opinion networks. First, it is obvious that each of us has a different network with different 

points and link structures. Secondly, it’s worth mentioning that if something is not 

represented in such a network, then the given person has no opinion concerning this 

information. The other definitions need some further explanation.

Vertices are simple statements; a compound statement is represented as more simple 

statements linked together. Vertices may contain any kind of information: facts and beliefs are 
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handled in a uniform way. (Practically, it is not easy to distinguish facts and beliefs, provided 

we may talk about facts.) We claim that our system involves “local truth” as a driving force

(this is in fact soft relativism in cognitive science, for further details see Meiland and Krausz 

(1982)). That is the reason for using belief systems and opinion networks as synonyms. The 

conduciveness of this approach can be supported by experimental studies: a great example of 

reasoning fallacies, the “myside bias”, and interactions between opinions and factual 

information is the article of Macpherson and Stanovich (2007).

Links may be logical connections: one statement is a consequence of another, two 

statements are contradicting, etc. Another possibility is that links are built on an associative 

basis: two statements have similar topics, subjects, subjectives, etc., or there are emotional 

liaisons, grammatical similarities, even sub-symbolic connections.

In a static case, vertices are characterized by their degree parameter:

1. Degree: ik - the number of connections of vertex i

Links are characterized by their one attribute:

2. Weights +1, 0 and −1 show whether the linked vertices are in positive, neutral or 

negative connection. (This scale can be made more precise in a later version of the 

model.)

A short description of these factors may be useful here:

Degree is simply the number of statements connected with the given vertex. A central 

statement is connected to a huge number of other statements; peripheral statements are linked 

to only a few others.

Links are positive, negative or neutral: two vertices are more solid together (+1), they 

rather impair each other (−1), or they are independent (0) like two “facts” about the same 

topic. Positive links strengthen the network; points help each other to remain in the system. 

Negative links stress the network and act towards a collision. These effects will play 

important roles in the system’s dynamics. 
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Dynamic mechanism and parameters

As we strive to give account of dynamic processes and use simulation results of a computer 

code (available at http://www.phy.bme.hu/~balogh/belief_networks/), a correct presentation 

of dynamics is inevitable. The main definitions of network dynamics are the followings:

Definition 4: An input is a new point for the network (with non-existing content).

Definition 5: At a certain time one and only one point of the network is active (it has a

distinguished role in dynamic processes).

Definition 6: A time step is a discrete time interval for elementary changes in the network. 

(Detailed elucidation is given below.)

Definition 7: In every time step n links randomly vanish. (This random process can be 

interpreted as forgetting (Bednorz & Schuster, 2006)).

Definition 8: A vertex losing all its links vanishes.

Main dynamic parameters driving all processes:

3. Compatibility factor of a vertex: ig - gives the probability that the given vertex is in 

positive (strengthening) connection with a randomly chosen vertex - a number 

between 0 and 1

4. Contradiction factor of a vertex: ih - gives the probability that the given vertex is in 

negative (weakening) connection with a randomly chosen vertex - a number between 0 

and 1

5. Fitness factor of a vertex: if - shows how much a vertex takes part in linking 

processes (compared to other vertices with the same number of connections) - a 

number between 0 and 1. (If 0if then this vertex never makes connections, if 

1if then it is maximally capable of linking.)

6. Negativity tolerance (consistency) of the network: H - shows what proportion of the 

connections of a certain vertex can be negative - a number between 0 and 1, global 

parameter. If the proportion of negative links is proved to exceed H , the vertex is 

ejected.
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Some remarks about these factors:

Compatibility and contradiction factors show how much a certain point fits in the network: if 

we believe in something and our network treats an inconsistent point, than g is small and h

is big. There are neutral connections, so 1 ii hg does not hold for every i . Consequently, 

g and h jointly refer to a given point and a given network. The values for these factors can 

be derived from the possible number of positive, negative, and neutral edges (denoted by a , 

b and c , respectively, in parameter sets) between the given point and all other vertices in the 

network (for more details, see Appendix A).

Fitness factors allow “newcomers” to become richer in links than elder points. If one point 

has 51 k links and fitness factor 1.01 f and another vertex has 12 k link and 5.02 f ,

then an input is linked to each of them with an equal probability. If we did not use fitness 

factors, then the older vertices would always dominate the networks. The importance of older 

vertices holds true even by the usage of fitness factors, but in this case changes in the order of 

significance are permitted. For a correct mathematical description see Appendix A.

Negativity tolerance is a crucial factor: if 0H , then no contradictions may occur, just 

as in the network of some mentally ill people. On the other hand, 1H resembles the case of 

schizophrenic belief systems.

Here we point out that there are two different ways of vertex ejection in the model: one 

due to the loss of links and another due to an inadmissibly high ratio of negative links.   

Having defined all the needed notions and parameters we are ready to delineate rules in 

opinion networks. These rules impose different kinds of changes: new links are formulated 

other links vanish, points are integrated others losing all their connections disappear.

Occurring processes are deemed to depict the way we organize our opinion structures.

Development always takes place in the vicinity of an active point: linking and checking 

procedures start there causing vertex integration and/or ejection. An active point is considered 

to be a statement one is currently thinking about.

There are two mainly different cases: input processing, when a new point containing 

unknown information is built in; and active point processing that is the general case for 

network structuring starting from already existing active points.
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Input processing starts when an input arrives and takes activity. (Here we see that the 

notion of active point includes the one of input: all inputs are active points for a certain time.)

The first step of input processing is preferential attachment: links are established between the 

input and vertices of the network. The probability of the formulation of a new link is directly 

proportional to the degree of the existing vertex and to its fitness factor. If all links are built of 

an input (an input carries a given number of links), then the types of the established links are

decided in a second step in accordance with the input’s compatibility and contradiction

factors. A consistency test is run in a third step. It is checked whether the ratio of negative 

links does not exceed the negativity tolerance limit )(H for any of the points. If there is a 

vertex with an unadmittable proportion of negative links, then it is ejected. Special cases and 

a possible chain of tests are elucidated in Appendix A. As the sum of link-weights controls 

changes regarding statements considered true and this sum is decisive whether statements 

remain in the network or they are ejected we may speak about “local truth” as a driving force.

If a point (the former input) is linked in, it becomes a point of the network. If the point is 

still active (that is time-dependent), there is a further linking process called structuring. The 

mechanism to treat existing points in the network (viz. thinking processes) is the following. A

two step random walk on the network starts from the active point. Random walks are 

weighted with the fitness factors, i.e. the probability to reach a certain neighbor is 

proportional to its fitness factor. We reach a vertex and link it with the active point. (One time 

step is needed till this point.) Then there is a decision based on the compatibility and 

contradiction factors of the input, whether the link is positive, negative or neutral. Then 

comes the consistency test. (Ending in one time step if there are not too many negative links

and no ejection is needed but consuming much time if a chain of tests is needed due to vertex 

ejections.) Two step random walks, linking and consistency tests are repeated till time runs 

out (e.g. a subsequent input arrives). According to the scale-free structure and small world 

property various formulations may grow up, and time devoted to a vertex highly influences its

future role in the network. Details are elucidated in the next section.

DISCUSSION AND APPLICATIONS

Network features
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In this section we analyze networks given by the former mechanism from a structural point of 

view. 

First, we ascertain that there is a very special parameter setting: if all fitness factors are 

equal, all links are positive, no time is given for random walks (time is devoted to consecutive 

input processing procedures), and there is no random edge removal (forgetting), then we 

obtain scale-free degree distribution in the same self-organizing mechanism which was used 

by Barabási and Albert in their seminal paper in 1999 (Barabási & Albert, 1999). Numerous 

properties of such scale-free networks (small worldness, the degree distribution itself, 

robustness and vulnerability, the distinguished role of early points, etc.) are crucial to 

reproduce real world phenomena and are thus central to the following investigations. 

Consequently, we use Barabási’s network as a reference point and show that we get back the

original model if none of our parameters are applied (Fig. 1a), and that the scale-free structure 

is kept even if all the parameters are used in the default version of our model (Fig. 1b). In the 

latter case inputs had more links (2 each); uniformly distributed fitness factors; and the

chances for contradiction, compatibility and neutrality were determined by uniformly 

distributed random variables (with mean values: 3/11  iiii hghg ). Moreover, time 

was given for linking processes ( 10E ). Negativity tolerance was chosen to be 2/1H

and even random link removal was present ( 1F ). These default settings are considered 

rational as all of the parameters have nontrivial values but none of them have distinguished 

roles. (Mathematical definitions of E and F , parameter settings and details about all figures 

are given in Appendix B.)

(Figure 1 about here.)

Degree distributions in Fig. 1 are power law decays characteristic for scale-free networks

(details in Appendix B). Due to the logarithmic scales, we get linearly decaying functions. 

(Throughout the article logarithmic plots are used for degree distributions.) These simulation 

results prove that the two structures are essentially the same. Consequences of this 

observation are far-reaching since preferentially built scale-free structures have special 

characteristics as outlined in the followings.

Small world
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The first structural feature resembling common experience about belief networks is small 

worldness. It is an everyday observation that associations in our mind may lead very far in a 

few steps. In terms of networks this feature is called “small world” property. The diameter 

(average shortest distance between two randomly chosen points measured in edges) of a small 

world network is incomparably smaller than the number of points, the order of magnitudes 

widely differs (Albert, Jeong, & Barabási, 1999). The small world characteristic makes an 

extremely diverse flow of thoughts possible. Thus, we expect a model encompassing small 

world attribution.

(Figure 2 about here.)

Fig. 2 shows simulation results: the diameter of a 1000-point Barabási network and a 1000-

point network in our model with default settings is 4.1 and 2.7, respectively. Clearly, in 

keeping with the expectations, the model produces small world networks: diameters grow 

logarithmically with the network size. Moreover, diameters of other networks in all further 

simulations are also very small compared to the number of vertices in those networks. Small 

worldness seems to be a typical feature of our networks based on the study of average 

distances. For further details, see Appendix B.

Apart from short characteristic path length, actual and simulated small world networks 

studied by Watts and Strogatz in their trailblazing article also showed high local 

connectedness (Watts & Strogatz, 1998). The distinctive combination of small worldness and 

clustering (i.e. heightened probabilities for neighbors of a point to be linked) is suggested to 

be relevant to cognitive (Schilling, 2005) and semantic networks (Steyvers & Tenenbaum, 

2005), too. Indeed, dense clusters of domain-specific knowledge are constituents of normal 

cognitive systems (Simonton, 1999). Corroboratively, levels of clustering (measured as the 

average connectedness between neighbors of each point, viz. a ratio between 0 and 1, for 

details see Appendix B) are relatively high in our default network, because the structuring 

mechanism adds triangles to the Barabási network in a similar fashion to models described by

Dorogovtsev and Mendes (Dorogovtsev & Mendes, 2002). In Fig. 3 the clustering coefficient 

is plotted against network size.

(Figure 3 about here.)

Scale-free network
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The second expected feature given by simulations is scale-freeness. The distribution itself 

means that the number of statements of a given importance obeys a power-law. (Here we note 

that importance and the degree of a point are not equivalent e.g. because it is also interesting 

how central they are concerning walks on the network, though, to a first approximation we 

use degree distributions to capture importance.) No single supreme thought is present in a 

healthy mind and the few very important core statements are closely followed by others. We 

can always find more and more statements of slightly smaller importance till we arrive to the 

most populous periphery (about hierarchic cognitive structures see e.g. Safran et al. (1986)).

Scale-free distribution implies that opinion systems obey Pareto’s 80/20 law. As expected, the 

majority of time is devoted to a minority of statements in our networks. Such skewed 

distributions enabled the rise of thought sampling as a reliable and valid technique capable of 

providing stable and reproducible results (Hurlburt, 1997).

Scale-free structures are robust: if a randomly chosen point is removed, it usually does not 

affect system behavior, as disappearing points are usually peripheral. However, “error 

tolerance comes at a high price in that these networks are extremely vulnerable to attacks (that 

is, to the selection and removal of a few nodes playing a vital role in maintaining the 

network’s connectivity)” (Albert, Jeong, & Barabási, 2000). We argue that our belief systems 

work in this way: the loss of peripheral statements does not mean much for the network, but 

attacks against core opinions may ruin the system causing serious psychological problems

(Padesky, 1994). (If conceiving thinking as a random walk on a network of thoughts, we 

always encounter routes crossing large centers; if they are attacked, a number of walks are 

spoilt.) As our networks are scale-free, we obtain error tolerance and attack vulnerability.

The fact that we imagine opinion systems as preferentially evolving scale-free networks

(Barabási & Albert, 1999; Barabási, 2002) should not be stunning for several reasons. First, it 

is shown that words in human language linked by co-occurrence in sentences form a scale-

free network with small world characteristic (Cancho & Solé, 2001). Secondly, small world 

and scale-free properties also appear in conceptual networks where similarities of concepts 

connect words of a language (Motter et al., 2002). Moreover, the same features hold for 

cognitive maps (Özesmi & Tan, 2006). If we conceive texts as linearized versions of 

subnetworks, we may also refer to strong correlations between text quality and complex 

network features (Antiqueira et al., 2007). Finally, the principle of preferential attachment 

also seems to be reasonable: people associate to statements that are strongly represented in 
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their networks, giving the reason for the feasibility of association based personality 

assessments introduced to psychology by Carl Gustav Jung. 

Anomalies from scale-freeness

Though, scale-free structures do not prevail in some cases: in the beginning when the 

network consists of a small number of points, our structures rather resemble random 

networks. On the contrary, if a point with a high fitness factor is present star shaped networks 

may occur. Such environment dependent transitions are generally observed in networks 

(Derényi et al., 2004). The former case (random network) can be interpreted as an immature, 

not well structured system that is characteristic for the inception of development processes. 

(Apparently, a small number of points can not form a scale-free degree distribution due to 

statistical reasons, but as the number of points grows scale-free distribution emerges.) The 

latter (star shaped network) is something completely different: there is a statement of unique 

importance in a network. This leads to a conformation that determines behavior: the 

exceptional point gathers a large number of links, most random walks go that way, and that 

point will be the absolute center as shown in Fig. 4. (The peak in the right is not a single point 

with a probability of 1 but approximately 100 points close to each other with probabilities of 

approximately 0.01, as the average of 10 000 simulations is depicted in the figure. The two 

curves indicate different simulations: the ordinal number of the special point was modified 

from 1 to 32.)

(Figure 4 about here.)

What could it mean in reality? As random walks cross the exceptional point extremely 

often, a star shaped structure hampers sufficient thinking. Instead of reaching vertices more or 

less proportionately (e.g. according to a scale-free distribution), we always get back to the 

center. Vertices of lower degrees are unlikely to be linked, normal system behavior and 

structuring are inhibited, and significant changes are improbable. This “polarization” can be 

observed in many areas as pointed out by Lord, Ross and Lepper in 1979. Politics, racism,

and private life are all fields of star network conformation. Often, there is absolutely no 

chance to integrate certain statements in a network, see political views. Too strong (usually 

emotional) centers lead to a grotesque case: for instance people evaluate information in the 

mirror of political parties and not the parties in the mirror of information. (It is shown that 
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emotions play a decisive role in political reasoning, see Westen et al. (2006)) This is a typical 

devastating effect of a star shaped subnetwork: new information are connected to the center 

and only allowed to remain in the network if there is a non-negative link between them. 

Similarly, there are conflict zones in private life: we know which part of the network should 

not be activated so as to avoid conflicts. Usually, star shaped structures are problematic parts 

of opinion networks.

Inherently encompassed phenomena

A major advantage of the outlined model is that it inherently encompasses phenomena 

emerging in a diverse range of everyday life. In the followings we show particular behavioral

characteristics of the model that can be matched to observations of reality.

The role of the sequence – crucial early points

To begin with, it is obvious from the rules of the model that the order of activity is crucial 

in the evolution of belief networks. The same inputs in different sequence may result in totally 

different networks. In the followings we list some examples that support the reality of this 

feature. (We note that at the present state of the model the order of activity is always decided 

by incoming inputs. In all simulations active inputs are connected, processed in the 

structuring mechanism, and then new inputs take the activity. However, input free structuring 

processes based on activation spreading can possibly be simulated with later versions of the 

computer code.)

First, it is a common experience that statements accepted in an early phase of opinion 

system formulation are of huge importance. In other words, first stimuli have a massive effect 

on our future way of thinking and it is not easy to remove old, entrenched ideas from belief 

systems (Safran et al., 1986). Here we may refer to the upbringing of children and the stressed 

importance of early inputs largely determining mentality (see e.g. Dawson, Ashman, and 

Carver (2000)). It is often argued that lots of psychological problems stem from early ages

(Riso et al., 2006) – when incorrect centers are built in, we claim. As a smaller scale example: 

if we first meet someone and thus a new part of the system arises, first impressions have great 

importance (for an example see Stewart, Dustin and Barrick (2008)). In our model all these 

effects are deemed to be manifestations of network-evolution based on preferential 
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attachment, where early vertices are of great importance, being located at the high degree end 

of degree distribution (Barabási, 2002). For an illustration, see Fig. 5.

(Figure 5 about here.)

Time as a determinant of importance

Second, it is unquestionable that time plays an essential role in the formulation of belief 

systems. Advertisers try to capitalize the fact that the more time is given to process an input, 

the bigger is the probability that it gets integrated and becomes a center (for details see 

Pechmann and Stewart (1990)). Besides, people who are rarely stimulated (and thus have 

much time for each input) are greatly affected by the few stimuli, these vertices become 

centers. These effects are included in our model: the more time is given to a vertex, the more 

connections it will build and the higher degree it will reach. Extremely long processing times 

lead to extreme degrees as shown in Fig. 6. Apparently, the peak refers to the high degree of a 

single point while other points have much lower degrees. (Again, the peak in the right is not a 

single point with a probability of 1 but approximately 100 points close to each other with 

probabilities of approximately 0.01, as the average of 10 000 simulations is depicted in the 

figure.)

(Figure 6 about here.)

Size as a measure of robustness

In a third section we analyze possibilities of changes in opinion structures. There is an 

enormous difference between statement integration chances if developed and undeveloped 

belief networks are juxtaposed with one another. New ideas may swiftly achieve great 

significance in an immature network but are not likely to lead to drastic changes in massively 

diversified, highly developed structures. Young people, for example, are strongly exposed to 

fanatic ideas (Harrison, 2006), while academic professors usually do not commit suicide 

attacks. Children are gullible while old people are sometimes unable to integrate new 

information. These are natural consequences of network size in the model. Once again, 

drawing parallel between significance of a statement and its place in the degree distribution 

(how many links does a point have compared with the others) we can assert that points (e.g. 
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with a relatively high fitness factor) reach higher levels of significance more easily in 

networks containing less points and edges. This effect is represented in Fig. 7. By smaller 

sizes, the “attacker point” can achieve maximal degree in the network while by greater sizes 

the maximal degree is significantly larger than the attacker’s degree. (Please note that we use 

logarithmic scales.)

(Figure 7 about here.)

Elder, highly qualified people usually have more developed networks as it follows from 

the previous arguments about the role of time, so their degree distribution is wider, they have 

more vertices with large numbers of links. Obviously, it is not easy for newcomers to attain 

such high degrees what is an explanation for the above mentioned experiences. On the other 

hand, networks with a smaller number of vertices and less connections are more easily 

affected by novelties. Though, there are a number of different ways of change that are under 

study in the following three subsections.

Learning – optimal input frequency

Learning, for instance, is a changing mechanism of pivotal importance. While classically 

it was deemed to be the sheer enlisting of a new statement and connectionists described

learning with changing weights of links, we combine the two approaches. The appearance of 

new statements and the construction of links (viz. structuring) jointly explain the way we 

learn. Our model precisely reproduces some nontrivial observations. 

Again, we start from a large scale example. It is well known from international surveys 

that Prussian school systems, where a comprehensive knowledge is offered and large amounts 

of facts are taught (Seton-Watson et al., 2004) (so there are lots of inputs) produce an 

excellent elite class and a poor average (OECD, 2004a). That can be underpinned by the 

model behavior: the complexity of an evolving network heavily depends on the linking 

capability of the student. (This can be interpreted as the real time equivalent of a time step in 

the model: those who learn or think faster need less time in reality to perform steps of linking 

and checking procedures.) Without sufficient linking capabilities information is useless, they 

form rapidly vanishing islands. Further information have no vertices where they could link to, 

the network does not improve. That happens to most children in a Prussian-type school: they 

just do not have enough time for structuring. (The previous quite general statement pertaining 
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to overall performance relies on the fact that e.g. text understanding – that is clearly strongly 

related to linking capability, and in which regard several countries outperform Prussian-type 

systems – is remarkably correlated with overall performance (OECD, 2004b).) In contrast, 

sufficient linking capability plus a huge amount of vertices expedites structuring: the number 

of possible links rises very fast with a growing number of vertices allowing optimal 

development. Reflecting this case differentiated education is introduced in several schools:

learning (linking) methods are taught for those who require it and information for the others 

who are ready to integrate. 

Here we reach a smaller scale problem: similarly to school systems, efficiency of 

individual lectures is largely determined by its speed. Frequency of inputs (the amount of 

information given in a time period) determines performance. Our model gives account of this 

feature: starting from a given network, working with nonzero random link removal and fixing 

the number of time steps available there is an optimal number of points to be given in the time 

period to reach a maximum number of integrated vertices after the process. The number of 

points in the network after the learning process is depicted in Fig. 8. The original network 

consisted of 1000 points and 2000 links; the number of added points varied between 10 and 

100, the number of available time steps was fixed to be 1000.

(Figure 8 about here.)

Obviously, it is worth building more connections if there is a danger of losing access paths 

due to forgetting. Moreover, the constructed topology determines resistance against random 

link removal. If we build a linear network with statements linked only to the subsequent 

statement as it often happens in history lessons, then large parts of the curriculum may be 

unreachable in the network due to the loss of certain connections. It is an everyday 

observation that we forget everything about some former studies and once being reminded of

a certain statement we are able to bring up a few connected statements but then we are stuck 

again. Interestingly, time intervals of such retrieval bursts follow power-law distributions in 

semantic networks (Rhodes & Turvey, 2007). Arguably, the curriculum structure is very 

important to preserve the integrity of statement networks amid random link removal. It is 

shown that recall for information within a representation increases as the number of types of 

interconnections and the strength of the interconnections within a representation increases 

(Nakamura, Kleiber, & Kim, 1992). Perhaps robustness of scale-free networks could be 

exploited so as not to lose access paths so fast.  (As a matter of course, the problem and the 
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need for appropriate structures are recognized without such theoretical foundations.) In

addition, we may refer to exams and particularly oral exams as examples of the usefulness of 

network based thinking. Teachers usually try to roam through the network of the students so 

to check the existence of certain points and connections. This is a reason for stressing the 

importance of links and the structure as a whole in contrary to the barren subsistence of 

vertices. We contend that understanding is hidden in the integration process.

Restructuring in debates

Another often encountered type of change where people try to shape the other’s network 

is debating. In a dispute the goal is to build a strong system (a network) of own arguments and 

to destroy the network of our opponent. The latter is done by causing percolation of the 

opponent’s structure by building in as many negative links as possible. There are different 

means how we can achieve this: we may point out contradictions of the structure, integrate 

new vertices for establishing negative links between existing vertices or integrate new vertices 

that are in contradiction with existing vertices themselves. It can be useful to draw a network 

of the opponent’s arguments so to analyze it and find the ideal vertices to attack or vertices 

that are not worth considering (e.g. peripheries that percolate after an attack). The frequently 

applied technique to simply confute all the statements with one argument is far from optimal.

The same means can be used when defending our own network under attack. This way of 

representation can develop existing network based methods (e.g. Chinn and Anderson (1998)) 

to reveal the structure of reasoning processes and may also prove valuable in evaluating

debates.

A further application of such a representation of debates arises from the fact that the 

center of a debate – the topic – is often unequivocal. If we drew up lots of networks of high 

quality argumentations then we could evaluate existing indicators of the centrality of a vertex 

in a network.

Subnetwork integration – manipulation or discovery

Finally, some interesting experiences about manipulation and scientific productivity. The 

model allows a very special way of vertex integration: if a new part of the network evolves 

separately from the former parts of the network and only a few connections are built between 

the two parts, then it is possible that contradictions remain undiscovered until enough time is 
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given for thinking about the new points. This is certainly the case of urban legends and 

conspiracy theories: a vast amount of new information is delivered with a few obvious 

connections to reality – insightful social commentaries about the cultural or economic context 

are presented and shared psychology helps to establish positive links (Heath, Bell, &

Sternberg, 2001) – and the theory itself is a positively linked network. A nearly disjoint 

structure of points strengthening each other does not allow vertices to be dropped. This 

strategy can also be used in a persuasion to get our information across without being rejected 

(e.g. due to a star shaped subnetwork) and this may lead to changes in the original network if 

we manage to build such viable structures that can override formerly developed parts.

If two distinct substructures are not controversial but connections are unnoticed, we may 

talk about “local discoveries” when connections are finally built. If local discoveries uncover 

unknown relations between two research areas, then we may produce scientific results. The 

magnitude of restructuring thus follows scale-free distribution due to the distribution of the 

size of connected parts. This means that most useful scientific ideas are distributed unevenly: 

a researcher produces the majority of his results in a minority of the time devoted to the job

(Fonseca et al., 1997). 

Further implications and conjectures

In this section we demonstrate applicability of network theoretical notions for belief systems 

then point out to the potential of the model to interpret widely used but vaguely defined

everyday notions. This chapter does not include systematic simulations, so arguments are 

rather conjectures for future studies.

Stability in structure and functioning

Noise is an external effect causing changes, possibly destruction in a network; noise 

filtration is a mechanism to avoid dramatic harmful changes. Self-organizing evolutionary 

networks always have methods to resist such changes (Csermely, 2006). In our case noise is 

coded in inputs with high contradiction factors, its filtration is tackled by the negativity 

tolerance factor, the modularized structure itself (destructions can be localized) and perhaps 

by protecting modules (consciously giving negative links to certain inputs).
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In general, diversity of behavior emerges if the number of links decreases. In our model it 

means that a great number of links enable associations to reach local centers in a few steps as 

the small world feature takes shape. In the lack of a sufficient number of links behavior 

becomes highly dependent on the structure defined by the existing links, behavior will not be 

averaged by the densely linked conformation. Indeed, unexpected reactions are characteristic 

for people who have undeveloped networks.

However, it is observed that too densely linked structures are also vulnerable (Watts, 

2002). This phenomenon is also encompassed in the model: if a vertex drops out and another 

is ejected due to the loss of the first (to which it was positively linked) then there will be a 

high probability that some vertices loose two positive partners and have to be dropped. If the 

network is too densely linked, the process can result in system-level destruction. (Such a 

process can be generated with the computer code.)

Psychological and communication problems

If a network is exposed to abounding new information containing inputs with relatively 

high contradiction factors then checking procedures may be interrupted by new inputs leaving 

inadequate points in the network. This lack of enforcement of rules in the network can lead to 

a feeling firmly associated with cognitive dissonance (Festinger, 1957). More generally, 

psychological problems are often related to the fact that our own rules are not vindicated. If 

there are forbidden parts of the network containing unacceptable proportions of 

contradictions, then these locked up problems can cause psychological malfunctions. 

Psychologists often do not really intervene in the development of belief systems but they lead 

the patient to certain problematic areas of their own network (Hermans, 1987).

Also, there is a possibility to interpret communication problems like failed talks. If 

partners do not want to follow the routes dictated by the other’s speech and only perceive 

single inputs or activations from it, then there will be no real conversation: both speakers 

roam their own networks.

Creativity and humor – distant linking 

Intelligence and creativity are notions definitely included in the scope of the model. If we 

think about intelligence as a quantity measured by IQ tests, then it is a kind of problem 

solving capability where two main features are required: having well-shaped local, small-
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scale statement structures on the one hand and being fast in searching on the other. In 

contrast, creativity is an ability of distant linking or more precisely, we call someone creative 

if his network is well-structured on a larger scale with sufficient connections between 

otherwise disjoint subnetworks. These definitions could explain the supposed correlation 

between intelligence and creativity till a certain IQ value (about 120) and their independence

above it (Rosen, 1963). Fast search in confined areas help problem solving on a larger scale as 

well. It is needed in creative problem solving to reach vertices that are a few steps away, i.e. 

before or after using the “creative link” between the distant areas. Although, no matter how 

fast we are in local search there is no real chance to find connections between two distant 

points without sufficient creative links because after a few steps there is an astronomic 

number of possible routes that can not be checked by a “brute force” technique. Given an 

eligible speed of search (depending on local structures and rapidity) the determining factor in 

creative problem solving will be the existence of far-reaching creative links.

The observed connection between humor and creativity (O’Quin & Derks, 1997) is also 

originated from this point: distant linking appears in humor in most cases – the punch line is 

usually a statement from a completely unexpected part of the network. A sense of humor thus 

relies mainly on two factors: the advanced state of the used structures (not all kinds of jokes 

are equivalently understood by people) and the ability of distant linking.

CONCLUSIONS AND PERSPECTIVES

In the present article we delineated a model of belief systems with a potential that can be 

harnessed in a wide range of research areas. The sheer structure of opinion networks, changes 

determining evolution, and specific behaviors that are given by the model have relevant 

implications regarding a number of cognitive psychological processes. Naturally, we are far 

from a proper description of opinion system formation and development, but the usage of 

scale-free network theory for modeling statement networks is promising. 

There are some obvious extensions of the method making specific properties or 

descriptive features more precise but complicating the model on the other hand. First, 

weighting of connections can be refined to give a nuanced picture of binding strength between 

statements. Though, a weighting mechanism is to be defined then. A possible solution can be 

to relate weights with usage frequency (like in several connectionist PDP models). Secondly, 

activation spreading can be included in the model. In the lack of inputs activation may spread 
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on the network enabling more complex structuring processes. Thirdly, points may be 

characterized with an additional factor – call it color – that refers to its topic including

features that are relevant in linking (object, emotions, grammatical form, etc.). All relevant 

features give one color to the point. If an input comes (with given colors), then linking starts 

with a probabilistic decision about the color that will be used when building the connection. 

The following step is the one we used in the original model applied to vertices that are 

marked with the given color. Consequently, points with more common colors (viz. stronger 

similarity) are linked with a bigger probability. Such modifications may improve the 

effectiveness of the model in several areas.

Apparently, there are scores of other possible improvements out of which we mention 

only one here. Networks are sensitive to drastic changes. A factor showing the magnitude of 

changes in a given time period tells a lot about the mental state of the person. It could be 

analyzed how certain environmental circumstances (frequency and type of inputs) affect 

mental status. The role of the original network may also be of crucial importance.

There are some questions that will determine the future of this model: exact methods for 

network mapping and quantifiable tentative steps for further substantiation are surely such.

Still, without answering these questions some applications are ready to be tried and perhaps 

the approach towards opinion structure research is expanded in a way.

We hope that a proper guidance was given to roam through a statement network about 

belief systems and researchers are inspired with properly fitting inputs. If new connections 

arise in the integration processes developing the structure of knowledge about belief systems, 

then this article attained its purpose.
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Appendix A

Mechanism of the model

(Figure 9 about here.)

Here we explain the mechanism of our model in details (see Fig. 9). The computer program 

from which simulation results are obtained uses exactly these definitions and algorithms. A 

short summary is given regarding structural consequences.

We realize network construction in a series of cycles. In each cycle the system processes 

only one input point: establishment of new connections between the point and the existing 

network is endeavored. According to the parameters it will succeed or not. If the input point 

joins the network it induces further linking until a new input arrives. The main units of the 

process are shown in Fig. 9.

There are three parameters in the cycle process denoted by U , E and F . They stand for 

the followings: U – the number of edges carried by the input point, E – available time steps 

for the whole cycle (“time for thinking” about the input information), F – determining the 

amount of edges to be forgotten (disappearing randomly) in one cycle.

Adding new points

We create input points (denoted by index i in the followings) with parameter values if , 

ig and ih . Parameters ig and ih may be considered in the following way: the probability for 

a particular edge to be positive, negative or neutral is 
iii

i

cba
a

ig  , 
iii

i

cba
b

ih  and ii hg 1 , 

where ia , ib and ic denote the potential number of positive, negative and neutral links, 

respectively. For the sake of mathematical rigor we note that values for a , b , and c that

were used as externally given parameters to generate factors g and h , can be conceived as 

follows. If we established links between the given point and all other points in the network,

and counted the positive, negative, and neutral edges (interviewed the given person and ask 

his or her opinion about the type of the connection), we would obtain an approximation for a , 

b , and c . If we, hypothetically, repeated this process many times, averages would converge 
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to the parameter values applied in our simulations. However, in the case of not extremely 

small networks, the first approximation based on an interview (a single doable experiment, 

from a simulation point of view), is reasonable. (Another practical solution to determine these 

factors could be to ask directly about compatibility values.)

Although, different environments can be realistically modeled by inputs with different 

compatibility and contradiction factors, the focus of our simulations were on effects where 

these factors did not have central roles. The inclusion of compatibility-related parameters 

contributed to the reality of the model and we showed that they do not interfere with other 

simulations.

First linking

As mentioned before new points should follow preferential linking in order to get scale-

free network structure. Mathematically it means that the probability of a new edge attaching 

to a particular vertex (denote this non-neighboring target vertex by t ) is proportional to tk . 

Taking into account our extra parameter referring to the attractiveness of points, one can 

formulate the expression

 pp
p

tt

kf

kf
tvertextolinkingP

 
)"(" (A.1)

p
 means that index p runs over all points which are not connected to point i , factors pf

and pk denote the compatibility factor and the degree of point p , respectively. The 

probability of building a positive, negative or neutral link is ig , ih and ii hg 1 , 

respectively. (If there are no edges in the network i.e. in the very beginning of a simulation 

one cannot evaluate expression A.1, so the following formula can be used instead:


p
p

t

f

f
, 

where notations are similar to those used before, but now the sum 
p
 runs over all points 

except i .)

This linking step must be repeated U times. Then we should check whether the new point 

is consistent enough with the “old” network. This is performed by calling a  iKilling

function (discussed below). If the output of  iKilling is “YES” – meaning that the new point 

does not fit in the network – all of its edges will be cleared and the “First linking” process will 
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be restarted. If the output of  iKilling is “NO” – meaning that there are not too many 

negative links – operation Structuring follows.

In this process time is needed for checking as it is elucidated in the next section (Killing). 

If the available time runs out without attaching the new point, we go on to the next input 

point.

Killing

For an arbitrary point j ,  jKilling returns “YES” if point j is more inconsistent with the 

network than the limit value fixed by parameter H .  jKilling returns “NO” if the ratio of 

negative links of point j does not exceed H . Mathematically:

 
 

 
 














H

H
jKilling

joflinks#

joflinksnegative#
ifNO

joflinks#

joflinksnegative#
ifYES

)( (A.2)

where  # denotes the number of elements of the   set, H is the consistency or 

negativity tolerance of the network.

One  iKilling test consumes 1 time step. 

Structuring

To construct new edges between the input point and former points of the network, two-

step random walks start from the input point. The first step from i leads to its neighbor 1n

with the following probability: 




p
p

n

f

f
nP 1)( 1 . (Where 

p
 means a summation over all first 

neighbors of i .) In the next step we arrive to a second neighbor 2n with the probability given 

here: 
p

p

n

f

f
nP

 
 2)( 2 . (Here 

p
 means a summation over all neighbors of 1n , except for i

itself.)
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Then we establish a link between the input and the afore mentioned point 2n . The new 

link will be positive, negative or neutral, respective probabilities are ig , ih and ii hg 1 .

Checking

After structuring processes it is possible that a point due to a growing number of negative 

connections does not fit in the network any more. To avoid discrepancy in the network 

checking mechanisms are needed. First, two tests are called:  iKilling and  2nKilling . 

According to the results of these tests:

1. If none of these two points should be removed: Structuring goes on.

2. If input point i should be removed and 2n not: we clear all the edges of the input and 

restart the First linking section. (This can be considered as a new chance for the input 

to get integrated.)

3. If point 2n should be removed and point i not: we remove 2n and start a checking 

mechanism to investigate, whether the removal of 2n affected other points as well. 

(The falling number of positive links may lead to ejection of new points.) Details are 

elucidated in the next section (Self-Consistency Test).

4. If both input point i and point 2n should be removed: we remove the one with a 

smaller number of edges and go on with processes described in either case 2 or case 3.

Self-Consistency Test

This is a test aiming to remove negatively linked points (where Killing would result in YES). 

The test requires a starting point (to be tested first) and time for the process.

When we remove a point, it can happen that a positively linked neighboring point – by 

losing this positive connection – gets under the required level of consistency ( H ). Therefore 

we should check each point which is positively linked to an ejected point. We introduce a list 

(called “blacklist” hereafter) to store the points that are waiting for such a test. A brief 

delineation of the process is shown in Fig. 10.
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(Figure 10 about here.)

Each Self-Consistency Test starts with a blacklist containing only the first point that 

induced the process. (A previous blacklist – if there was such – is lost while starting a new 

test.) We always analyze the first element of the blacklist. (Denoted by blacklist[1] on Fig. 

10.) We determine whether blacklist[1] is to be removed or not – of course – by calling a 

 1]blacklist[Killing function. If the output of  1]blacklist[Killing is YES, we delete it and 

put all positively connected points to the end of the blacklist ranked by their f values. (One 

point is put on the list only once – here we refer to the case when it is already on the list when 

another neighbor is ejected.) If the output of  1]blacklist[Killing is NO, we remove the point 

from the blacklist without any further operation and continue with the current first element of 

the blacklist. (Removing one point from the blacklist does not mean that it would be out of the 

blacklist forever. It can be put back if other ejections induce this.) This algorithm runs till we 

get an empty blacklist or till available time runs out. Again, the running of one 

 1]blacklist[Killing function consumes one time step.

Consequences

Evolution rules determine the structure of the evolving network. Preferential attachment leads 

to a so called scale-free network, viz. where degree distribution obeys a power law: 

 kkP )( , where  is a fixed number. In case of preferential attachment (where  is 

usually between 2 and 3) the 80/20 law and the emergence of the small world characteristic 

are straightforward consequences. Our linking processes involve preferential attachment and 

further linking based on random walks. This mechanism also produces scale-free networks, as 

it is shown in the original text of the article. 

Appendix B

Network features and simulations
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In the course of network research degree distribution plays an inevitable role. A degree-

distribution diagram shows the number of points with a given number of links. For scale-free 

structures the probability of having k links is:

 




Z

k
kP



 , (B.1)

where  is the exponent of the distribution, 



N

k

kZ
1


 is a normalization factor, N is the 

total number of points. A conspicuous presentation of power law distributions is possible, if

log-log scales are used, since:

      kZkP logloglog   (B.2)

is a linear function and  is the slope of the line. As the network is built on a probabilistic 

basis, all concrete networks differ. Usually a great number of networks are built with the same 

parameter set and degree distributions are averaged to get smoother, more precise curves.

Simulations

Figures 1a and 1b:

The following simulation was performed to prove that our model produces scale-free degree

distribution under quite general circumstances. The Barabási model was built with appropriate 

parameters and a default version (with no distinguished parameters that could cause special 

effects) of our model was run. Parameter sets are given in Table 1, results are depicted in Fig.

1a and 1b. (RND means a random number between 0 and 1 from a uniform probability 

distribution.)

To recall the meaning of the parameter we give short explanations for the letters:

H : negativity tolerance factor of the network

U : number of prospective edges of the input

E : amount of available time steps for a cycle

F : number of edges to be forgotten (thus EFn / with the original notation)

f : fitness factor

a, b and c: relative probabilities for an edge to be positive, negative, or neutral, respectively

(Table 1 about here.)
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Obviously, if all parameters are removed we get back the Barabási model that is 

undoubtedly scale-free. For the default parameter set we have scale-free properties in a wide 

range. We do not have lower degree values with higher probabilities as there is more time 

( 1E ) to connect each input to other points. Behavior is otherwise similar to the one 

observed in the original Barabási model. (If we replace the random values of cba ,, and f

with constant numbers, e.g. 1 fcba for all vertices, degree distributions remain 

essentially unchanged. Thus, scale-freeness is not a consequence of the random numbers in 

the default parameter set, but it is a more intrinsic feature of the model.)

Figure 2:

The key property of a small world network is its diameter. To check whether we really have 

small word networks we calculated the diameter of our networks and plotted them with 

respect to the network size.

The original Barabási network and our model (default settings) are represented in Fig. 2 

(parameters are listed in Table 1). Please note that the scale of the plot is log–lin so the 

diameter is approximately a logarithmic function of network size. Our network seems to be an

even smaller world than the Barabási network. The cause is simple: in this general case extra 

time is given for structuring that enables points to collect more links than in the Barabási 

model. Average shortest distances of other simulations are summarized in Table 2 to show 

that small world properties are preserved.

(Table 2 about here.)

Figure 3:

The clustering coefficient of a point is defined as the proportion of links between the vertices 

within the immediate neighborhood of the point divided by the number of links that could 

possibly exist between them. The clustering coefficient of the network is the average of the 

clustering coefficients of all vertices in the network. Due to structuring, our default networks 

are more cliquish than networks in the Barabási model. To obtain Fig. 3, settings shown in 

Table 1 were used.
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Figure 4:

As mentioned afore, if we deal with inhomogeneous inputs, then some points may obtain 

outstanding significance. In this simulation the fitness factor of a point is different from the 

others. (As earlier points usually become big centers, we performed two simulations. In the 

first run the special point was the first, in the second run the special point was the 32nd. Thus, 

we see that in these simulations conspicuous effects occur mainly due to the changed fitness 

factors, and not the early integration.) The network was expanded to 1000 points. Settings are 

given in Table 3.

(Table 3 about here.)

An average of 10 000 simulations is shown on Fig. 4.

As it is unambiguous from Fig. 4, an outstanding fitness factor creates a distinct position for 

the exceptional vertex. It gains a huge amount of links (in this extreme case more than half of 

the points are linked to the special point), far more than others have – this leads to its disjoint 

situation at the high degree end in the degree distribution. At the same time, others lose 

linking opportunities that causes decline at the high degree end of the distribution. Links 

missing here are responsible for the insufficient behavior.

Figure 5:

Default settings and the original Barabási model were used to obtain Fig. 5 and prove that 

early points are of high importance. From the graph one can see that in the Barabási case the 

statement holds exactly (the first three points must have the same importance due to 

symmetrical reasons). In our model, the vast majority of points show the prescribed behavior. 

The first few points are of lower importance as time given to process them is not effective: all 

links are built and their degree can not grow further. If we reduced E in the simulation, the 

prescribed behavior would be extended. (In this parameter set the first two points must have 

the same degree due to symmetrical reasons, which is correctly retained.)

Figure 6:
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Similar effects can be reproduced to those of star shaped networks’ due to high fitness factors, 

if extremely long processing time is given for a special point, while other parameters are 

unchanged. Settings are given in Table 4.

(Table 4 about here.)

Figure 7:

Again, we used default settings. The “attacker point” under investigation had the same 

parameters as the others, except for its processing time 100E . Settings are given in 

Table 5.

(Table 5 about here.)

Figure 8:

We used a basic network of 1000 points and in each run added a different number of new

points in 1000 time steps. Fig. 8 shows the final number of points in the network. Standard 

deviations are marked to characterize uncertainties. We used a high F parameter (forgetting) 

to get this curve. Settings are given in Table 6.

(Table 6 about here.)
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Fig. 1a. Degree distribution of the

Barabási model
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Fig. 1b. Degree distribution of

our model with general settings

Fig.1. Scale-free degree distributions. 

Power law decays appear as linear functions by logarithmic scales. Fig. 1a shows that the original Barabási 

network can be reproduced as a special case in our model. Very similar functions are obtained, if all parameters 

have nontrivial values to capture the full complexity of our model, as depicted in Fig. 1b. Values below 10 are 

anomalously scarce, because default inputs have 10 time steps to establish new connections.
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Fig. 2. Diameter as a function of network size.

Both the original Barabási model and the default version of our model show small world properties: diameters 

grow logarithmically with the network size. (Please note that linearly increasing diameters are plotted against 

logarithmically scaled network size.) Due to the larger number of links in the latter case, average shortest 

distances are even smaller if all parameters are applied.
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Fig. 3. Average clustering coefficients.

Cognitive networks are highly clustered.  This feature is captured by the default version of our model as Fig. 3 

shows. Let us note that the curve of the average clustering coefficient in our model is a different kind of decay 

(being nonlinear in the log-log graph) than the one observed in the case of Barabási-type networks. The much 

slower decrease implies that high clustering can be retained in scale-free structures. At very low network sizes 

clustering is lower due to forgetting.
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Fig. 4. Degree distribution of a star shaped network.

If the fitness factor of a special point is exceptionally high (1, as opposed to other fitness factors that are 

uniformly distributed random numbers between 0 and 1/3), the given point will have an exceptionally high 

number of edges. The links gathered by the special point will be taken from other centers (see the deviation from 

linear decay at high degree values), resulting in a less diverse network on the whole. A typical realization 

resembles a star with many links to the center and less connections between peripheral points.
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Fig. 5. Degree of points by their sequential order

Leaving other parameters unchanged, average degrees of points are decided by their position in the sequential 

order of inputs. The fact that earlier points have higher degrees implies that earlier inputs have higher 

importance. (Anomalies at law values of the sequential order refer to the early stages of network development, 

when new points can not use all 10 time steps to establish new connections due to the low number of points in 

the network.)
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Fig. 6. Degree distribution of a star shaped network with extremely long time

If a special point has 1000 time steps to establish connections while others have only 10, the special point will 

have an outstanding number of edges. The gap between the degrees of the special point and the second biggest 

center in the network is clearly visible.
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Fig. 7. Influence on different sized networks

An ‘attacker point’ with a given number of edges and processing time is integrated in the network. Its relative 

importance rapidly decreases as the size of the affected network grows. The same input which can dominate 

small networks has a minor role in more developed systems as the widely diverging values on the right show.  
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Fig. 8. The effect of input frequency on learning

If random link removal (forgetting) is on, then the ideal strategy to build a network of as many vertices as 

possible in a given time is not a trivial task. If inputs are too scarce, time is not used efficiently. However, if 

inputs are too frequent, fragile networks are built: the insufficient number of connections makes such networks 

prone to destruction by random link removal. Thus, there is an optimal frequency of inputs that enables a 

moderately large number of new points to establish enough links to resist the removal of some connections.
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Fig. 9. Flowchart of the algorithm

Two main processes can be differentiated in the model. First, inputs are processed with a simple feedback loop

(Killing) to establish new connections between new points and the network. When the given number of links 

carried by the input is used and there is still time left, further structuring begins. Two step random walks start, 

the endpoints of these walks are linked to the active point and a checking mechanism (see Fig. 10.) is run till 

time runs out and new inputs take the activity after a potential random link removal phase.
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Fig. 10. Algorithm of the Self-Consistency Test

If negative edges are built in or positive edges are lost, the ratio of negative links may exceed the threshold 

value. Potentially affected vertices are listed in the blacklist. If a point from the blacklist has to be killed, its 

positively linked neighbors are added to the list. The Self-Consistency Test runs until the blacklist is empty or 

the activity is taken by a new input.



TABLES

Table 1. Settings for the scale-free examination

Number of 

averaged 

runs

Number 

of 

points

H U E F f a b c

Barabási model 200 x 10 000 – 2 1 0 1 – – –

Default settings 200 x 10 000 0.5 2 10 1 RND RND RND RND

Table(s)



Table 2. Diameters of the networks in our simulations

Network Network size Diameter Diameter error

Barabási – Albert network (Fig. 1a.) 1000 4.07 ± 0.064

Default network (Fig. 1b.) 1000 2.70 ± 0.021

Star-shaped network 1 (Fig. 4. – circles ) 1000 2.61 ± 0.137

Star-shaped network 2 (Fig. 4. – triangles) 1000 2.47 ± 0.087

Star-shaped network 3 (Fig. 6.) 1000 2.80 ± 0.015

Default network under attack (Fig. 7. – last data point) 1000 2.70 ± 0.022



Table 3. Settings for the “star shaped network” examination (the role of the fitness factor)

H U E F f a b c

Special point

(1st or the 32nd) 0.5 1 10 1
1 1 1 1

Other points RND/3 RND/3 RND/3 RND/3



Table 4. Settings for the “star shaped network” examination (time dependency)

H U E F f a b c

Special point

(last) 0.5 1
1000

1 1 RND RND RND

Other points 10



Table 5. Settings for the study on the effects of network size

H U E F f a b c

Base network

(variable number of  points) 0.5 2
10

1 RND RND RND RND

Last point 100



Table 6. Settings for the study on learning

H U E F f a b c

Base network 

(1000 points) 0.5 1
2 0

1 1 0 0

New information variable 10



Dear Professor Taylor,

First let me thank you for your and the reviewers’ work. Comments of both reviewers were 
relevant and valuable. We hope that we managed to significantly improve the manuscript 
based on their insightful commentaries. 
We carefully considered all comments and revised the manuscript, figures, and tables 
accordingly. In the followings, we list the most important changes with reference to the 
comments.

Reviewer #1

1. “In this paper, many definitions and modeling methods are introduced for modeling 
belief system. However, it seems that this paper lack the realistic data for testing the 
feasibility of the model. It would be better if the authors could use some realistic data to 
ensure the model is correct.”

1. Reviewer #1 pointed out that more realistic data would be needed to ensure that the model 
is correct. We agree that it is absolutely not easy to prove that the model captures reality. That 
is why we wrote in the original article “There is at present no unequivocal proof for its 
relevance that will satisfy all skeptics. Nor is it obvious what “conclusive” evidence could be 
obtained. Although we accept that none of the examples by itself proves the existence of the 
phenomenon, we hope that when they are taken together – like weak fibers woven into a rope 
– the total structure will bear weight.” 
However, we accept that more links to real-world observations were needed to improve the 
quality of the paper. Thus, we spent the previous month in scientific libraries, read about all 
aspects covered in the paper, and after the thorough literature mining we added 21 references 
to support hitherto unsubstantiated arguments and made slight changes where it was 
necessary. We think that at the present state of the manuscript the “fibers” are stronger and the 
references to the evidence of realistic examples add to the reality of the model.

2. “I can find that the BA model and belief system has similar degree distribution in the 
simulation. As far as I know, many properties can also describe the characteristics of 
complex networks, such as average distance, clustering coefficient etc. Is it possible that 
the authors can do some further research about the role of average distance, clustering 
coefficient in the proposed model?”

2. Reviewer #1 underlined the role of average distances and clustering coefficients. We did 
further research about both. We measured average shortest distances in all simulations and 
prepared a new table to demonstrate the small world property in all simulations. A new 
section about the clustering coefficient was inserted. We are particularly thankful for this 
comment, because the cliquish structure of belief networks was not mentioned before, 
although this realistic feature is well reproduced by the model. Simulation results are 
illustrated in Fig.3. Simulation details are given in Appendix B.

Reviewer #3

1. “How does the system assign the link value (+1, 0, or -1) to the connections? Each 
vertex is a statement that contains fact or opinion. Decision of the 
consistency/inconsistency between two statements is important in system's dynamics. 
The authors have to explain the decision mechanism.”

* Response to Reviewers



1. Reviewer #3 suggested a clarification of the process in which link values are assigned.  We 
made changes in the “Some remarks about these factors” subsection of the section “Dynamic 
mechanism and parameters” to be more articulate and elicited the mechanism in details in 
Appendix A.

2. “How does the system decide the order of active point? (i.e., different sequence with 
same inputs could result in totally different network).”

2. Reviewer #3 was perfectly right to point out that the same inputs in different sequence 
could result in totally different networks. According to this comment, we expanded the 
relevant paragraph. Changes can be found in the subsection titled “The role of the sequence –
crucial early points”.

3. “Key parameters used in the system (e.g., time, fitness value, the given number of link 
of input point, etc.) need to be listed with their default values and rationality.”

3. We listed key parameters and their default values before Fig.1b and argued for the 
rationality of the default setting.

4. “In page 9, first statement is unclear.”

4. We rewrote the problematic sentence in Page 9 of the original manuscript.

5. “Each figure needs its caption just below each Figure with brief description (e.g., x- y 
axis indication).”

5. We prepared captions for all figures.

6. “Why it has type I and II of network? (Needs explanation).”

6. To avoid confusion, type I and II networks were omitted. The generally applied version 
(type II) became the “default” version of the model. The role of the previous type I setting 
(scale-freeness is not a consequence of the random numbers in the default parameter set) is 
mentioned in Appendix B.

7. “The author needs to add why Barabasi's network was chosen to be compared to.”

7. In the revised manuscript we point out before the first simulation why Barabási’s network 
was taken as a reference point.

8. “In Fig. 5, add the exact processing time tested.”

8. In Fig.5 (Fig. 6 in the revised manuscript) we added the exact processing time in the figure 
caption.

Yours sincerely,

Miklós Antal


