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ABSTRACT

Summary: The ModuLand plug-in provides Cytoscape users an
algorithm for determining extensively overlapping network modules.
Moreover, it identifies several hierarchical layers of modules, where
meta-nodes of the higher hierarchical layer represent modules of the
lower layer. The tool assigns module cores, which predict the function
of the whole module, and determines key nodes bridging two or
multiple modules. The plug-in has a detailed JAVA-based graphical
interface with various colouring options. The ModuLand tool can run
on Windows, Linux or Mac OS. We demonstrate its use on protein
structure and metabolic networks.
Availability: The plug-in and its user guide can be downloaded freely
from: http://www.linkgroup.hu/modules.php.
Contact: csermely.peter@med.semmelweis-univ.hu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Nodes of biological networks often belong to multiple network
communities. Recently, a number of methods were published to
determine tightly or extensively overlapping network modules
(Adamcsek et al., 2006; Ahn et al., 2010; Fortunato, 2010;
Kovács et al., 2010; Mihalik and Csermely, 2011; Palla et al.,
2005). Our ModuLand framework (Kovács et al., 2010) introduced
community landscapes. The x–y plane of a community landscape is
a conventional 2D visualization of the network, whereas the z-axis
represents community centrality. Community centrality of a given
edge (or node) was defined as the sum of local influence zones of
all network edges (or nodes) including the given edge (or node;
Supplementary Fig. S1). Thus community centrality represents an
integrated measure of the whole network’s influence to one of
its edges or nodes. Hills of the community landscape correspond
to network modules (Supplementary Fig. S1) yielding extensive
overlaps. This concept led to the development of the ModuLand
family of network modularization methods (Kovács et al., 2010).

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as the joint first Authors.

The widely used Cytoscape program (Shannon et al., 2003) has
several very useful clustering plug-ins (Bader and Houge, 2003;
Morris et al., 2011; Rhrissorrakrai and Gunsalus, 2011; Rivera
et al., 2010; Su et al., 2010). However, these methods do not
focus on extensive modular overlaps, and do not build a modular
hierarchy, where meta-nodes of the higher level represent modules
of the lower level. Moreover, existing plug-ins do not provide
measures identifying the centre of the module, as well as key nodes
bridging two or multiple modules (see Supplementary Table S9,
and Supplementary Discussion). Here, we introduce the Cytoscape
plug-in of the most widely applicable version of the ModuLand
method family (Kovács et al., 2010). We demonstrate its ability to
determine biologically relevant, extensively overlapping network
modules, hierarchical layers of modules, module cores and key
inter-modular nodes using protein structure and metabolic networks.

2 SOFTWARE OVERVIEW
The ModuLand Cytoscape plug-in uses the LinkLand influence zone
determination method and the ProportionalHill module assignment
method of our formerly published ModuLand network module
determination method family (Kovács et al., 2010). These two
methods provide a good trade-off between the fast (but rather
inaccurate), and accurate (but rather slow) other ModuLand
methods.

The installation of the ModuLand plug-in follows Cytoscape
procedures. This is much easier than the setup required for the earlier
version (Kovács et al., 2010). The program can be distributed as
a single .jar file. Moreover, the current implementation works on
Linux, Windows and Mac OS, thereby extending the options of the
former version.

The plug-in determines extensively overlapping modules using
any undirected network type and weight description of Cytoscape.
Moreover, the plug-in calculates a set of hierarchical modules. In
the modular hierarchy, modules of the lower level become meta-
nodes of the upper level, and modular overlaps of the lower level
become weights of the meta-edges at the upper level. The plug-in
creates, automatically re-loads and visualizes the higher and higher
level hierarchies (with lower and lower number of meta-nodes and
meta-edges, see Fig. 1), until the whole network coalesces into a
single meta-node.
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ModuLand plug-in for Cytoscape

Fig. 1. The hierarchical modular structure determined by the ModuLand Cytoscape plug-in. The left side shows the protein structure network of E.coli
Met-tRNA synthase and its three hierarchical levels as determined by the plug-in. Each meta-node of a higher hierarchical level represents a module of the
level right below. All networks are coloured according to the five modules identified on hierarchical level 1. This colouring option can be performed by the
two clicks of the plug-in main dialog box shown on the right

The lower number of modules at higher hierarchical levels may
be visualized either using the meta-nodes of the higher hierarchical
level itself, or projecting this higher level modular structure to the
nodes of the original network. On any level of module hierarchy,
nodes or meta-nodes can be visualized assigning them the colour of
the module they mostly belong to. This shows a non-overlapping
assignment of nodes to modules. Nodes can also be marked by
blending the colours of the modules proportional to the overlapping
module assignment of the given node. Edges may be optionally
visualized as a mix of the colour of their two nodes. The plug-
in sets meta-node labels on the higher hierarchical level based
on the modules of one level below in the hierarchy. The meta-
node on the higher hierarchical level representing the module has
the name of the node having the highest modular assignment
value for the corresponding module at one level below in the
hierarchy.

Node colours can also visualize several node (or meta-
node) measures including weighted degree, betweenness centrality,
community centrality, overlap and bridgeness (see Supplementary
Fig. 2).

The plug-in has an option to merge highly similar module pairs
containing roughly the same nodes or meta-nodes with the same
intensity. For merging of modules the plug-in offers a correlation
histogram, and allows the user to select an appropriate correlation
threshold. The runtime complexity of the plug-in version remained
∼O(n3), as defined earlier (Kovács et al., 2010). To enhance the

performance of the plug-in for calculating the higher hierarchical
layers further, we introduced a user-selected optimization. This
results in the disappearance of meta-edges with very small weights
at the higher hierarchical levels. These low intensity meta-edges are
derived from the minor overlaps of distant modules of the lower
level. This optimization allowed a speedup in running time by a
factor of 7 for larger networks (Supplementary Table S10).

The plug-in is capable to generate overview reports for each
hierarchical level. These reports list the number of the nodes (meta-
nodes), edges (meta-edges) and modules, the effective number of
modules (see Kovács et al., 2010) and the size of each module.
The overview also contains the list of the 10 nodes of each module
having maximal module assignment value to the respective module
(called as the module core). Data related to the module assignment
and the calculated measures of nodes (and meta-nodes of higher
hierarchical levels) can be exported in a csv or txt format.

The plug-in contains a Help function, and a detailed step-by-step
User Guide can also be downloaded from the plug-in webpage:
www.linkgroup.hu/modules.php.

3 RESULTS AND CONCLUSION
ModuLand-derived communities of various yeast protein–protein
interaction networks gave a functionally meaningful description of
the yeast interactome (Kovács et al., 2010). Function of module core
proteins proved to be good indicator of the function of the whole
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module (Mihalik and Csermely, 2011). Here, we demonstrate the
use of the ModuLand Cytoscape plug-in on the protein structure
network of Escherichia coli Met-tRNA synthase, since an elegant
study (Ghosh and Vishveshwara, 2007) showed the existence of
four alternative communication paths in this enzyme. The five major
sub-domains of Met-tRNA synthase were well reflected by the five
modules obtained at the second hierarchical level of the protein
structure network (Fig. 1; Supplementary Table S3). Key amino
acids of the most frequently used communication path (Ghosh
and Vishveshwara, 2007) either belonged to the module cores
of the three modules involved in transmission of conformational
changes, or were inter-modular nodes between these modules (see
Supplementary Table S4). These observations were in agreement
with earlier findings (Ghosh and Vishveshwara, 2008; Sethi et al.,
2009).

We further demonstrated the use of the ModuLand plug-in by
comparing the modular structures of the metabolic networks of
the free-living bacterium E.coli and the endosymbiont Buchnera
aphidicola (Pál et al., 2006). E.coli metabolic module cores
had a significant overlap (Fisher’s exact test P=1.4×10−7; see
Supplementary Information for more details) with the modules
determined earlier by Guimera and Amaral (2005).

Both visual inspection (see Supplementary Figs S4–S7) and
numerical values (see Supplementary Table S7) suggested a more
differentiated modular structure of the E.coli metabolic network
than that of B.aphidicola. This finding is in agreement with earlier
findings (Kreimer et al., 2008; Mihalik and Csermely, 2011; Parter
et al., 2007; Samal et al., 2011; Tamames et al., 2007). The difference
in modular structure was not likely to be caused by the difference in
the size of the E.coli and B.aphidicola networks (see Supplementary
Figs S8 and S9, and Supplementary Tables S7 and S8).

E.coli module cores corresponded to significantly less metabolic
functions than those of B.aphidicola (0.53 versus 0.67 functions
per module core reactions, respectively; bootstrap method P=
0.0392). This difference remained even when we used an ensemble
of 1000 randomly selected sub-networks of the E.coli metabolic
network having the same number of nodes or edges as found in the
smaller B.aphidicola network (see Supplementary Material for more
details). Moreover, additional tests suggested that the large twin-
modules forming the centre of the B.aphidicola network were not
responsible for the differences observed in the number of metabolic
functions (see Supplementary Material). These results indicated
that modules of the metabolic network of an organism from a
variable environment (E.coli) are more specialized than metabolic
network modules of a symbiont having a constant environment
(B.aphidicola). It is noteworthy that our result is in agreement
with earlier findings using non-overlapping modularization (Parter
et al., 2007), which is a further indication that the module cores
of the plug-in capture well the biologically relevant function of
modules.

In conclusion, the ModuLand Cytoscape plug-in provides a user-
friendly and efficient method to identify and visualize a hierarchy
of extensively overlapping modules, and determines key network
positions (like module cores and bridges). As shown by several
case studies, modules identified by the plug-in correspond to
biologically meaningful groups, module cores help the identification
of biological functions and inter-modular nodes have a key role in
a variety of biological networks.
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Supplementary Figures 
 

 
 
Supplementary Figure 1. Hierarchical modules of Met-tRNA synthase protein structure network. The 
figure illustrates the steps of modular analysis by the ModuLand Cytoscape plug-in on the example of the protein 
structure network of E. coli Met-tRNA synthase. The 3D positions of the amino acids and the protein structure 
network were constructed by [Ghosh and Vishveshwara, 2007] as described in Supplementary Methods. Panels 
A1, A2 and A3 show the influence zones of the edges between the three amino acid pairs indicated. Influence 
zones show the segment of the network affected by the given edge, and were calculated by the LinkLand 
algorithm as described previously [Kovacs et al., 2010]. Panel B shows the community landscape of the protein 
structure network. The height of the community landscape is the sum of all influence zones containing the given 
node or edge. This measure is called as community centrality. Hills of the community landscape correspond to the 
49 overlapping modules of the first hierarchical level of the protein structure network shown by different colours. 
Modules were determined using a merge correlation threshold of 0.9. On Panel C the colours of the same 
community landscape represent the module structure of the second hierarchical level containing only 5 modules. 
Panel D shows the 3D structure of Met-tRNA (blue) and Met-tRNA synthase (red) aligned to the protein structure 
network. On the protein structure network of Panel E nodes and edges were coloured according to their 
assignments to the second hierarchical level. The three major domains of Met-tRNA-synthase (see Supplementary 
Table 1) are marked with labels coloured according to the colour of the most correlating module (see 
Supplementary Table 2B). The illustration on Panel D was made by the JMol program [Herráez, 2006]. Panel E 
represents a Cytoscape plug-in visualization using the organic layout option. Other Panels were created using the 
Blender program2. 

                                                 
2 Blender is the free open source 3D content creation suite, available for all major operating systems under the GNU General Public License. For more 
information see http://www.blender.org  
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Supplementary Figure 2. Illustration of a few centrality measures of the ModuLand Cytoscape plug-in. The 
figure shows 4 screenshots of the E. coli metabolic network obtained by the plug-in. Panel A shows the 23 
modules of the original network. Panels B, C and D show the community centrality, bridgeness and betweenness 
centrality measures of the smaller region of the network marked by dashed black square on Panel A. Measures 
were visualized by continuous colour mapping using blue-to-red colour scales on the VizMapper panel of 
Cytoscape from 0 to 20 percentages. Green dots highlight the top 5 core metabolites of the 4 major modules 
present in the marked network region. All networks were visualized using the Cytoscape Organic yLayout. 
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Supplementary Figure 3. Community centrality, overlap and bridgeness of communicating amino acids of 
Met-tRNA synthase. The protein structure network of E. coli Met-tRNA synthase was constructed as described 
in Supplementary Methods. Modules of the second hierarchical level were determined using the ModuLand 
Cytoscape plug-in with a merge correlation threshold of 0.9. Data of the 43 communicating amino acids 
participating in the transmission of conformational changes between the catalytic centre and the anticodon 
binding site of Met-tRNA synthase obtained from cross-correlations of molecular dynamics simulations [Ghosh 
and Vishveshwara, 2007], or data of the remaining 504 amino acids of the protein structure network are shown by 
red or grey bars, respectively. Average values were marked by the vertical arrows of the respective colours. 
Panels A through C show the community centrality, modular overlap and bridgeness values, respectively. The 
difference between the two datasets was verified using the Welch’s two sample t-test (p-value < 0.0008 for all the 
three measurements). Community centrality values were determined using the LinkLand algorithm on the original 
network. The overlap values were calculated from module assignment values at the second hierarchical level. 
Bridgeness values represent the smaller of the two modular assignments of a node in two adjacent modules, 
summed up for every module pairs. This value is high, if the node belongs more equally to two adjacent modules 
in many cases, i.e. if it behaves as a bridge between a single pair, or between multiple pairs of modules. Such 
bridging positions correspond to saddles between the ‘community-hills’ of the 3D community landscape shown 
on Supplementary Figure 1B. Note that community centrality shows the influence of the rest of the network to the 
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given node, modular overlap reveals the simultaneous involvement of the node in multiple modules, while 
bridgeness characterizes an inter-modular position of the node between adjacent modules [Kovacs et al., 2010]. 
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Supplementary Figure 4. Hierarchical modules of E. coli metabolic network. The construction of the network 
is described in Supplementary Methods. The inset shows the first level of module hierarchy of the network 
created by the ModuLand Cytoscape plug-in. Nodes in the inset represent modules on the original network. 
Images were created by the Cytoscape program [Shannon et al., 2003] in case of both networks, using the Organic 
yLayout. Edges were coloured in greyscale according to their weights. The colours of the nodes were set by the 
ModuLand Cytoscape plug-in. Nodes of the original network were coloured according to the colour of the 
module, where they mostly belong. In the first hierarchical level shown at the inset nodes were coloured 
according to the module they represent and their position represents the approximate position of the 
corresponding modules. Nodes in the inset were labelled with the name of the module centre node in the original 
network. Note the presence of multiple modules of roughly equal size. 
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Supplementary Figure 5. Hierarchical modules of B. aphidicola metabolic network. The construction of the 
network is described in Supplementary Methods. The inset shows the first level of module hierarchy of the 
network created by the ModuLand Cytoscape plug-in. Nodes in the inset represent modules of the original 
network. Images were created by the Cytoscape program [Shannon et al., 2003] in case of both networks, using 
the Organic yLayout. Edges were coloured in greyscale according to their weights. Colours of the nodes were set 
by the ModuLand Cytoscape plug-in. Nodes of the original network were coloured according to the colour of the 
module, where they mostly belong. In the first hierarchical level shown at the inset nodes were coloured 
according to the module they represent and their position represents the approximate position of the 
corresponding modules. Nodes in the inset were labelled with the name of the module centre node in the original 
network. Note the presence of two extremely large modules centred on ATP-synthase (ATPS4rpp, brown) and 
glucose permease (GLCptspp, yellow). 
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Supplementary Figure 6. Community centrality landscape of the E. coli metabolic network. The image was 
created using the Cytoscape program [Shannon et al., 2003] with the Organic yLayout. Colours of nodes were set 
manually by defining custom continuous colour mappings in the Cytoscape program according to the LinkLand 
community centrality [Kovacs et al., 2010] calculated by the ModuLand plug-in. Nodes with community 
centrality values from 0 to 500 were coloured continuously from blue to red, while the values from 500 to 
450,000 were assigned to the colour range between red and yellow. Nodes with community centrality higher than 
450,000, were marked with yellow. The largest community centrality value was that of pyruvate kinase (PYK) 
having a centrality of 2,689,582.  
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Supplementary Figure 7. Community centrality landscape of the B. aphidicola metabolic network. The 
image was created using the Cytoscape program [Shannon et al., 2003] with the Organic yLayout. Colours of 
nodes were set manually by defining custom continuous colour mappings in the Cytoscape program according to 
the LinkLand community centrality [Kovacs et al., 2010] calculated by the ModuLand plug-in. Nodes with 
community centrality values from 0 to 500 were coloured continuously from blue to red, while the values from 
500 to 180,000 were assigned to the colour range between red and yellow. Nodes with community centrality 
higher than 180,000, were marked with yellow. The largest community centrality value was that of ATP synthase 
(ATPS4rpp) having a centrality of 2,275,416. Note the confluent central plateau in the middle of the network 
corresponding to the two extremely large modules centred on ATP-synthase and glucose permease (GLCptspp; 
see Supplementary Figure 5). 
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Supplementary Figure 8. B. aphidicola metabolic sub-network containing only the common nodes with the 
E. coli metabolic network. The network contains the 103 common nodes of the giant components of B. 
aphidicola and E. coli metabolic networks connected by their 198 edges from the B. aphidicola metabolic 
network. The image was created using the Cytoscape [Shannon et al., 2003] force directed layout option. The 
network contains 17 disjoint components, where the largest component has 72 nodes. The list of the common 
nodes can be found in Supplementary Table 8. 



 

 12

 
Supplementary Figure 9. E. coli metabolic sub-network containing only the common nodes with the B. 
aphidicola metabolic network. The network contains the 103 common nodes of the giant components of B. 
aphidicola and E. coli metabolic networks connected by their 77 edges from the E. coli metabolic network. The 
image was created using the Cytoscape [Shannon et al., 2003] force-directed layout option. The network contains 
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52 disjoint components, where the largest component has 18 nodes. The list of the common nodes can be found in 
Supplementary Table 8. 



 

 14

Supplementary Tables 
 
 
Supplementary Table 1. Domain structure of Met-tRNA synthase. The table lists the domains of E. 
coli Met-tRNA synthase [Ghosh and Vishveshwara, 2007].  
 

Domain ID 
Amino 

acid 
position 

Domain name Subdomain name 

1 4-99 Rossmann-fold 1 domain  
(catalytic activity) 

2 251-322 Rossmann-fold 2 domain 

3 323-388 

N-terminal, catalytic domain 

stem contact fold  
(KMSKS) domain 

4 100-250 connecting peptide (CP) domain  

5 389-550 C-terminal, anticodon binding domain  

 
 
 
Supplementary Table 2. Modules of Met-tRNA synthase protein structure network. The table 
shows the size of modules and the module core amino acids of E. coli Met-tRNA synthase protein 
structure network at the second hierarchical level. Construction of the network is described in 
Supplementary Methods. Modular structure of the network was determined by the Cytoscape ModuLand 
plug-in. The first level of hierarchy showed 49 local modules after merging the 47 pairs of the original 
96 modules, which were above the 0.9 correlation threshold (not shown). The second hierarchical level 
detailed in this Table indicated 5 modules corresponding to the domain structure of the protein. Module 
size was characterized by the ‘effective number of amino acids’, which efficiently captures the 
cumulative number of all fractions of amino acids belonging to the given module [Kovacs et al., 2010]. 
For each module the 10 amino acids having the highest module assignment value of the module (called 
as module core amino acids) were listed in a decreasing order of modular assignment. Amino acids 
identified as members of intra-protein communicating pathways [Ghosh and Vishveshwara, 2007] 
obtained from cross-correlations of molecular dynamics simulations were marked with boldface letters. 
 

Module 
ID 

Effective 
number  

of amino acids 
Module core amino acids 

module 1 378.0 Tyr260, His28, Trp281, Asn102, Arg356, Phe84, Phe264, Gln30, Trp34, Tyr280 
module 2 103.1 Trp221, Trp204, Leu201, Asn216, Met218, Glu220, Gln202, Phe197, Phe222, Ser198 
module 3 178.7 Tyr490, Tyr418, Met479, Ile400, Arg485, Gln474, Leu473, Phe484, Cys477, Ser478 
module 4 75.8 Phe377, Asn382, Val386, Asp384, Ile385, Asn387, Val381, Val378, Val390, Ala383 
module 5 65.4 Cys145, Tyr128, Tyr165, Leu170, Gln126, Ser175, Val141, Lys142, Pro167, Gln153 
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Supplementary Table 3. Correlations between Met-tRNA synthase domains and protein structure 
network modules. Construction of E. coli Met-tRNA synthase protein structure network is described in 
Supplementary Methods. Modular structure of the network was determined by the Cytoscape ModuLand 
plug-in. Domains of Met-tRNA synthase were assigned as described previously [Ghosh and 
Vishveshwara, 2007]. Spearman’s Rank correlation values were calculated between vectors representing 
modules and domains by the R statistical program.3 Each vector had 547 elements, equal to the number 
of amino acids of E. coli Met-tRNA synthase. Values of module vectors were set to the module 
assignment values of the amino acids at the second level of modular hierarchy as described in the legend 
of Supplementary Table 2. In case of domain vectors, if the amino acid belonged to the given domain, 
then its value was set to its community centrality value, while it was zero otherwise. In Table 3A 
correlation of the 5 modules with the 3 major domains are shown. The maximal correlations with the 3 
major domains are highlighted with yellow background showing that module 1 corresponds to the 
catalytic, module 5 to the connecting peptide and module 3 to the anticodon binding domain, 
respectively. Table 3B shows the correlation of the yet un-assigned modules 2 and 4 to the 3 catalytic 
sub-domains and the 2 other domains of Met-tRNA synthase. Correlation values above 0.2 were 
highlighted with yellow background showing that module 2 corresponds to both the Rossman-fold 2 
subdomain and the adjacent connecting peptide domains, while module 4 corresponds to the stem-
contact-fold subdomain and the adjacent anticodon-binding domain. 
 

Supplementary 
Table 3A 

 

catalytic 
domain 

connecting 
peptide 
domain 

anticodon 
binding 
domain 

module 1 0.68 -0.19 -0.4 
module 2 0.33 0.28 -0.58 

module 3 -0.11 -0.61 0.77 
module 4 0.08 -0.68 0.59 

module 5 -0.24 0.8 -0.53 
 

Supplementary 
Table 3B 

Rossmann- 
-fold 1 

(catalytic) 
subdomain 

Rossmann- 
-fold 2 

subdomain

stem 
contact 

fold 
subdomain

connecting 
peptide 
domain 

anticodon 
binding 
domain 

module 2 0.13 0.22 0.13 0.28 -0.58 
module 4 -0.02 -0.27 0.42 -0.68 0.59 

 

                                                 
3 R is a GNU project defines a language and gives an environment for statistical computing and graphics. See: http://www.r-project.org 
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Supplementary Table 4. Modular properties of the shortest and most frequently used Met-tRNA 
synthase communication pathway. The Table contains amino acids of pathway IV of Ghosh and 
Vishveshwara [2007] obtained from cross-correlations of molecular dynamics simulations. Pathway IV 
starts at Leu13 of the catalytic centre, and propagates the conformational change towards Trp461, which 
constitutes a part of the tRNA anticodon binding site. Domain numbers refer to those of Supplementary 
Table 1. Module assignment values show the strength of the assignment of each amino acid to different 
modules. Values higher than 30% are highlighted violet for each amino acid. Community centrality, 
overlap and bridgeness values (defined as in [Kovacs et al., 2010]) were calculated by ModuLand 
Cytoscape plug-in. On the table we highlighted those numbers yellow, which belonged to the top 15%. 
 

Module assignment ratios (%) 

Communi
cating 
amino 
acid 

Domain 

module 
1  

(catal. 
dom.) 

module 
2  

(catal. + 
conn. 
pept. 
dom.) 

module 
3  

(anti-
codon 
dom.) 

module 
4  

(catal. + 
anti-

codon 
dom.) 

module 
5  

(conn. 
pept. 
dom.) 

Community 
centrality Overlap Bridgeness

Leu13 1 98.31 0.56 1.09 0.03 0.00 858 1.10 0.0521
His28 1 95.51 0.39 3.98 0.12 0 6653 1.22 0.0683
Ile89 1 95.42 0.39 4.07 0.12 0 2710 1.23 0.0197
Asp32 1 95.42 0.39 4.07 0.12 0 6532 1.23 0.0549
Arg36 1 93.73 0.38 5.66 0.23 0 6327 1.29 0.0755
Leu495 5 36.81 0.04 55.30 7.85 0 2465 2.46 0.0626
Tyr357 3 57.16 0.34 30.37 12.13 0 1268 2.60 0.0682
Asp384 3 8.32 0.06 15.51 76.11 0 2468 2.03 0.0667
Lys388 3 7.05 0.03 29.63 63.29 0 3207 2.31 0.1200
Asn452 4 13.51 0.01 79.59 6.89 0 4186 1.89 0.0881
Arg395 4 8.48 0.01 66.40 25.11 0 1138 2.29 0.0357
Asp456 4 13.97 0.01 84.52 1.51 0 3403 1.62 0.0172
Trp461 4 13.87 0.01 84.58 1.55 0 905 1.62 0.0047

 
 
 
Supplementary Table 5. Community centrality, overlap and bridgeness values of Met-tRNA 
synthase communicating amino acids. The table shows the average values of community centrality, 
overlap and bridgeness values calculated by the ModuLand Cytoscape plug-in based on the second 
hierarchical level as described in Supplementary Table 2. Communicating amino acids denote the 43 
amino acids defined as members of communicating pathways between the active centre and the 
anticodon binding site by [Ghosh and Vishveshwara, 2007] obtained from cross-correlations of 
molecular dynamics simulations. Communicating amino acids have higher average values than the rest 
of the network in case of all the three measures. The difference between the two datasets was verified 
using the Welch’s two sample t-test (p-value < 0.0008 for all the three measurements). 
 

 
Number 
of amino 

acids 

Community 
centrality Overlap Bridgeness 

Communicating 
amino acids 43 2895 1.86 0.065 

Not communicating 504 1795 1.50 0.034 
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amino acids 
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Supplementary Table 6. Basic structural properties of E. coli and B. aphidicola metabolic 
networks. Values were calculated by the Python igraph module [Csardi and Nepusz, 2006]. The 
characteristic path length was defined as the average length of the unweighted shortest paths, while the 
diameter of the network was the length of the longest unweighted path containing no circles. The global 
clustering coefficient (transitivity) was defined as the probability that the neighbours of a node are 
connected. We created random samples from the E. coli network by selecting connected random sub-
networks with the same number of nodes or edges as can be found in the B. aphidicola network. In each 
case 1000 random sample sub-networks of the E. coli metabolic network having an equal number of 
nodes or edges like the B. aphidicola network were selected as described in the Methods section in 
detail. Table shows average values ± the standard deviations. 
 

Organism E. coli 
E. coli samples 

(node limit = 190 as 
in B. aphidicola) 

E. coli samples 
(edge limit = 563 as 

in B. aphidicola) 
B. aphidicola 

Number of nodes 294 190 ±0 258 ±5.4 190 

Number of edges 730 328 ±22.9 559 ±4.04 563 

Global clustering coefficient 0.54 0.58 ±0.04 0.59 ±0.02 0.6 

Average number of neighbours 4.966 3.45 ±0.24 4.34 ±0.1 5.93 

Characteristic path length 5.74 8.86 ±1.16 6.56 ±0.35 4.20 

Diameter 15 24.61 ±3.95 18.13 ±2.2 11 
 
 



 

 19

Supplementary Table 7. Modular properties of E. coli and B. aphidicola metabolic networks. 
Values were calculated on a Linux machine using the same ModuLand binary modularization programs 
which are packaged to the Cytoscape plug-in. We generated two types of random samples from the E. 
coli metabolic network. In each case we selected 1000 random sample sub-networks of the E. coli 
metabolic network having an equal number of nodes or edges like the B. aphidicola network as 
described in the Methods section in detail. The table shows the average values ± the standard deviations. 
Average module size values were the ratios between node and module numbers, while the average 
effective module sizes were the average values of the effective number of nodes belonging to the given 
module. The effective number of modules was calculated based on the module assignment values 
summed up for each node. The exact definitions of the metrics are described in the Supplementary 
Information of [Kovacs et al., 2010].  

 

Organism E. coli 
E. coli samples 

(node limit = 190 as 
in B. aphidicola) 

E. coli samples 
(edge limit = 563 as 

in B. aphidicola) 
B. aphidicola 

Number of nodes 294 190 ±0 258 ±5.4 190 

Number of edges 730 328 ±22.9 559 ±4.04 563 

Number of modules 23 21.97 ±2.67 23.66 ±2.4 8 

Effective number of modules 6.16 5.5 ±0.95 5.61 ±0.63 2.11 

Average module size 12.78 8.78 ±1.1 11 ±1.1 23.75 

Average effective module size 8.07 5.81 ±0.46 7.14 ±0.49 11.34 

Average module overlap of 
nodes 1.69 1.49 ±0.1 1.28 ±0.08 1.4 
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Supplementary Table 8. The common metabolites of E. coli and B. aphidicola metabolic networks. 
We list the 103 common nodes of the giant components of E. coli and B. aphidicola metabolic networks. 
Names of the nodes are the same in case of 102 nodes, while there is one additional metabolite (named 
DHQD in the B. aphidicola network and DHQTi in the E. coli network) with different names. 
 
 

Name of the metabolite 
ACKr 
ACLS 
ADK1 
ADSL1r 
ADSS 
AHCYSNS 
AICART 
APRAUR 
ASAD 
ASPK 
ATPS4rpp 
CDPMEK 
CHORS 
CTPS2 
DAPE 
DB4PS 
DDPA 
DHDPRy 
DHDPS 
DHFR 
DHFS 
DHPPDA2 
DHQD (DHQTi) 
DHQS 
DMATT 
DMPPS 
DTMPK 
DXPRIi 
DXPS 
ENO 
FBA 
FMNAT 
G1PACT 
GAPD 

GF6PTA 
GHMT2r 
GK1 
GLCptspp 
GLUR 
GRTT 
GTPCII2 
HCO3E 
IMPC 
IPDPS 
KARA1 
MECDPS 
MEPCT 
METAT 
METS 
MPTG 
MTHFC 
MTHFD 
MTHFR2 
NADK 
NADS1 
NAMNPP 
NDPK1 
NDPK2 
NDPK3 
NDPK4 
NDPK5 
NDPK7 
NNATr 
PAPPT3 
PDH 
PGAMT 
PGI 
PGK 
PGM 

PMDPHT 
PRPPS 
PSCVT 
PTAr 
PUNP1 
PYK 
RBFK 
RBFSa 
RBFSb 
RNDR2 
RNDR3 
RPE 
RPI 
SDPDS 
SDPTA 
SHK3Dr 
SHKK 
TALA 
THDPS 
TKT1 
TKT2 
TPI 
UAAGDS 
UAGCVT 
UAGDP 
UAGPT3 
UAMAGS 
UAMAS 
UAPGR 
UDCPDP 
UDCPDPS 
UGMDDS 
UMPK 
VALTA 

 



 

 21

Supplementary Table 9. Comparing the various clustering plug-ins available for Cytoscape. 
Numerous clustering methods are available as Cytoscape plug-ins. The following table compares the 
most widely used clustering Cytoscape plug-ins with the ModuLand Cytoscape plug-in. References and 
more information for each plug-in can be found in the Supplementary Discussion. 
 
Plug-in name Clustering method(s) Cytoscape 

baseline for 
the latest 
plug-in 

Module 
overlaps 

Supported 
platforms* 

Additional feature(s) 

ModuLand Overlapping modules are 
determined based on node 
centrality/density values 
defined by limited 
network walks started 
from each edge 

2.8.2 yes any Determining overlapping 
module hierarchy, 
calculating measures 
based on overlapping 
module structure, 
colouring of the 
network, etc. 

MCODE Finds clusters based on 
local density measures 

2.5.1 no any Creating networks from 
the identified clusters; 
fine-tuning the selected 
cluster’s size 

MINE Agglomerative clustering 
algorithm (based on local 
density and modularity 
measures) 

2.6 yes any Creating networks from 
the identified clusters 

NeMo Identifies modules based 
on a neighbour-sharing 
score 

2.7 no any  

clusterMaker Contains various 
clustering methods (e.g. 
hierarchical, k-means, 
AutoSOME, affinity 
propagation, MCODE, 
etc.) 

2.8.2 no any Cluster visualizations 
(e.g. tree view, heat 
map); creating new 
network from clusters or 
attributes 

Clauset-Newman-Moore 
method implementation 
variants 

any GLay 
 

Clustering methods from 
igraph library 

2.7.0 no 

windows 
64bit 

Including layout 
algorithms  

*: ‘any’ platform includes all platforms supported by Cytoscape (like Windows, Linux, Mac OS; both 32 and 64bit) 
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Supplementary Table 10. Runtime of the ModuLand plug-in in case of different networks. 
Network modularization and the creation of the first hierarchical module level were performed using the 
ModuLand Cytoscape plug-in. The runtime was measured both with and without the optional 
optimization included in the ModuLand plug-in for large networks. (This optimization reduces the 
number of low intensity edges appearing in higher hierarchical levels reflecting the minor overlaps 
between distant modules at one level lower in the hierarchy.) All values listed below show the average 
time of five runs. All modularizations were run on the same software and hardware environment: Intel 
Core2 Duo 3 GHz processor, 4GB RAM, 32bit Windows 7 Professional, Cytoscape 2.8.2, Oracle Java 
SE 1.6.26. The B. aphidicola and E. coli metabolic networks were created using the data of [Feist et al., 
2007] and [Thomas et al., 2009]. The E. coli Met-tRNA synthase protein structure network is described 
in [Ghosh and Vishveshwara, 2007]. The yeast high fidelity protein interaction network was assembled 
by [Ekman et al., 2006]. The school friendship network was constructed based on [Moody, 2001]. The 
power distribution network was defined in [Watts and Strogatz, 1998]. The word association network is 
based on the University of South Florida word association network 
(http://www.usf.edu/FreeAssociation). All the seven networks are further described in the 
Supplementary Discussion and can be downloaded from http://www.linkgroup.hu/modules.php. 
 
 

Network name 
Number 

of  
nodes 

Number
 of 

 edges 

Number
 of  

modules 

Runtime [sec] 
without 

optimization 

Runtime [sec]
with 

optimization 
B. aphidicola metabolic network 190 563 8 0.82 0.78
E. coli metabolic network 294 730 23 0.92 0.84
E. coli Met-tRNA synthase protein 
structure network 547 2153 96 2.19 2.04
Yeast high fidelity interactome 2444 6271 55 9.60 8.91
School friendship network 1127 5096 236 14.91 8.88
Power distribution network 4941 6594 207 23.61 22.98
Word association network 10617 63788 994 4935.51  702.97
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Supplementary Methods, Results and Discussion 
 

Construction of E. coli Met-tRNA synthase protein structure network  
The protein structure network of Escherichia coli Met-tRNA syntethase was generated from the 
equilibrated state of the molecular simulation of the E. coli Met-tRNA synthase/tRNA/MetAMP 
complex as described and kindly shared by [Ghosh and Vishveshwara, 2007]. The network was obtained 
by converting the Cartesian coordinates of the 3D image to distances of amino acid pairs, and keeping 
all non-covalently bonded contacts within a distance of 0.4 nm. The final weighted network was created 
by removing self-loops, and calculating the inverse of the average distance between amino acid residues 
as edge weights. The protein structure network had 547 nodes and 2,153 edges, since the first 3 N-
terminal amino acids were not participating in the network. The network data can be downloaded from 
our web-site: <www.linkgroup.hu/modules.php>. 
 

Construction of E. coli and B. aphidicola metabolic networks and randomly selected sub-networks 
of the E. coli metabolic network 
Metabolic networks of Escherichia coli and Buchnera aphidicola were constructed based on the primary 
data of [Feist et al., 2007] and [Thomas et al., 2009], respectively. Frequent cofactors were deleted from 
the networks, except of those metabolic reactions, where cofactors were considered as main 
components. For better comparison of networks, metabolic reactions were assumed to be irreversible 
and flux balance analyses (FBA) were performed resulting in weighted networks. All flux quantities 
were minimized, whereas reactions not affecting the biomass production were considered having zero 
flux. Weights were generated as the mean of the appropriate flux quantities in absolute value, except of 
the case when one of the fluxes was zero that resulted in a zero weight automatically. Subnetworks were 
created based on metabolic reactions having non-zero flux quantities, and the giant components of the 
respective networks were analyzed using the ModuLand Cytoscape plug-in. Metabolic networks of B. 
aphidicola or E. coli had 190 nodes and 563 edges, or 294 nodes and 730 edges, respectively. The same 
networks were used earlier [Mihalik and Csermely, 2011]. The network data can be downloaded from 
our web-site: <www.linkgroup.hu/modules.php>. 
 
We selected connected random sub-networks from the E. coli metabolic network using the algorithm 
having the following pseudo code:  
 

repeat { 
 sub-network := original network 
 while the sub-network has more node (or edge) than the node (or edge) limit { 
  repeat { 
   rnd := a randomly choosed node from the sub-network 
   tmp_network := sub-network – rnd 
  } until tmp_network has only one component 
  sub-network := sub-network – rnd 
 } 
 if the sub-network is different from each network in the storage then store the sub-network  
} until the storage does not contain enough sub-networks 

 
The two ensembles of 1000 randomly selected sub-networks and the Python scripts generating the sub-
networks can be downloaded from our web-site: <www.linkgroup.hu/modules.php>. 
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Construction of a school-friendship network 
We used the data of the high-scale Add-Health survey, which mapped social connections of high schools 
of the USA [Gonzaléz et al., 2007; Moody, 2001, Newman, 2003].4 In the survey recorded between 
1994 and 1995 social connections of 90,118 students in 84 schools were recorded. For each friend 
named, the student was asked to check off, whether he/she participated in any of five activities with the 
friend. These activities were: 
  

1. you went to (his/her) house in the last seven days;  
2. you met (him/her) after school to hang out or go somewhere in the last seven days;  
3. you spent time with (him/her) last weekend; 
4. you talked with (him/her) about a problem in the last seven days;  
5. you talked with (him/her) on the telephone in the last seven days.  

 
Based on these data, connections were assigned with weights from 1 to 6. A nomination as friend 
already resulted in a weight of one, and each checked category added one to that weight. In addition to 
the nomination data, these files include the gender, race, grade in school, school code, and total number 
of nominations made by each student.  
 
We measured the runtime of the ModuLand plug-in using the Community-44 school network, because it 
contains a high number of students with a dense social network [Newman, 2003]. This network has an 
approximately equal number of black and white students. The network contains 1,147 students with 
6,189 directed edges between them. In our current study directed parallel edges were merged into a 
single undirected edge with a weight equal to the sum of the original weights, and only giant component 
of the network was used. This process resulted in a weighted undirected network consisting of 1,127 
nodes and 5,096 edges with weights between 1 and 12. The network data can be downloaded from our 
web-site: <www.linkgroup.hu/modules.php>. 
 

Construction of the electrical power-grid network of the USA 
To measure the runtime of the ModuLand plug-in, we used the unweighted and undirected USA 
Western Power Grid network as an example from the field of engineered networks [Watts and Strogatz, 
1998]. The power grid network has 4,941 nodes and 6,594 edges, and is a favored network for studying 
error propagation and the effect of malicious attacks. The original network data were downloaded from 
the website of Prof. Duncan Watts (University of Columbia, http://cdg.columbia.edu/cdg/datasets). The 
network data can also be downloaded from our web-site: <www.linkgroup.hu/modules.php>. 
 

Construction of the yeast protein-protein interaction network 
To measure the runtime of the ModuLand plug-in, we used the unweighted and undirected yeast protein-
protein interaction network assembled by Ekman et al. [2006] consisting of 2,633 nodes and 6,379 edges 
covering approximately half the proteins of yeast genome. We analyzed the largest connected 
component of the network consisting of 2,444 nodes and 6,271 edges. Besides the high confidence of its 
data, we chose this network, because it was used in the identification of party and date hubs, an 
interesting dynamic feature of protein-protein interaction networks [Ekman et al., 2006]. The network 
data can be downloaded from our web-site: <www.linkgroup.hu/modules.php>.  

                                                 
4This research uses data from Add Health, a program project designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris, and funded by a 
grant P01-HD31921 from the National Institute of Child Health and Human Development, with cooperative funding from 17 other agencies. Special 
acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Persons interested in obtaining data files from Add 
Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524 (addhealth@unc.edu). 
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Construction of a word association network 
To measure the runtime of the ModuLand plug-in, we used the University of South Florida word 
association network (http://www.usf.edu/FreeAssociation), where 6,000 participants produced nearly 
three-quarters of a million responses to 5,019 stimulus words. This word association network gives a 
relative strength for each stimulus-response word pair, calculated by taking into consideration the count 
of associations to the response word given the count of stimuli by the stimulus word: The relative weight 
of an A -> B edge (called forward strength, FSG) is expressed as FSG = P/G, where G is the count of 
people who received the word A as the stimulus, and P is the count of people among them who 
responded with word B for that stimulus. Based on this data, a weighted and directed network can be 
built. While the direction of edges provide insight to the complexity of human conceptual thinking, in 
the present study we considered the fact of association between words, and built an undirected network. 
Therefore, the parallel forward and backward edges were collapsed into a single non-directed edge, and 
weighted with the sum of the original weights. This process on the giant component of Appendix A of 
the University of South Florida word association network resulted in a weighted and undirected 
network. In this study we analyzed the largest connected component of this network consisting of 
10,617 nodes (English words) and 63,788 edges (associations) between them. The network data can be 
downloaded from our web-site: <www.linkgroup.hu/modules.php>. 
 

Correlations between Met-tRNA synthase domains and protein structure network modules 
Clustering analysis has been used for a long time to identify protein domains [Guo et al., 2003; Xu et 
al., 2000]. However, former methods used the non-overlapping modularization technique based on the 
classical minimum-cut Ford-Fulkerson algorithm. This method performs well with two-domain 
proteins, but gives not so precise results with multi-domain proteins [Xu et al., 2000]. Later the two-
domain cut algorithm was extended by a neural network learning mechanism [Guo et al., 2003]. The 
difficulties of domain prediction made interesting to examine whether the high-resolution ModuLand 
algorithm may predict the domains of a larger protein. 
 
The E. coli Met-tRNA synthase enzyme contains 550 amino acids forming 3 major domains, the 
catalytic, the tRNA-binding and the connecting domains. Its catalytic domain is consisted of 3 sub-
domains: 2 Rossmann-folds and a stem-contact fold. The first Rossmann-fold contains the active centre 
of the enzyme (Supplementary Table 1. and [Ghosh and Vishveshwara, 2007]). The modular structure of 
the first hierarchical level is shown on Panel B of Supplementary Figure 1. This level has the 547 amino 
acids of the protein structure network and their 3D physical contacts as 2,153 weighted edges. Panel C 
of Supplementary Figure 1 shows the second hierarchical level, where the 49 local modules of the first 
level serve as nodes of the second level and their 490 overlaps give 490 weighted edges of the second 
hierarchical level. At this, second level 5 modules have been identified as shown on Supplementary 
Table 2.  
 
The effective number of modules at the second hierarchical level is 3.2, which is roughly the same as the 
number of the 3 major domains. Supplementary Table 3A lists the Spearman’s Rank correlation of the 3 
major domains with the 5 modules at this level of hierarchy. The N-terminal, catalytic domain, the 
connecting peptide domain and the anticodon binding domain are mostly correlating with modules 1, 3 
and 5, respectively. As shown on Supplementary Table 3B module 2 corresponds mainly to both the 
Rossmann-fold 2 subdomain and the connecting peptide domain. Module 4 corresponds to the stem 
contact fold subdomain and the anticodon binding domain. Importantly, both the {Rossmann-fold 
2/connecting peptide} and the {stem contact fold/anticodon binding domain} pairs are adjacent to each 
other in the primary structure of the protein. The fact, that only modules at higher hierarchical levels 
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correspond to the domains of the protein, is similar to the findings of Delvenne et al., [2010] and 
Delmotte et al. [2011], who described a large number of smaller, initial modules, which merged to larger 
clusters corresponding to the domain structure of the proteins examined only at the end of the 
simulation. The modular structure obtained here is in agreement of the structure obtained before for the 
same enzyme by Ghosh and Vishveshwara [2008] using the overlapping modularization program, 
CFinder [Adamcsek et al., 2006]. This former analysis found disjoint modules, which is in agreement of 
the very cohesive nature of the modules found by the CFinder program (for a direct comparison, see 
[Kovacs et al., 2010]. 
 

Modular properties of Met-tRNA synthase communicating amino acids  
Met-tRNA synthase needs to recognize both the anticodon and aminoacylation regions of the tRNA, 
which are relatively far from each other (separated by ~70Å in space). An earlier study [Ghosh and 
Vishveshwara, 2007] examining the cross-correlations of molecular dynamic simulations of the protein 
combined with a continuity analysis of the protein structure network identified four communication 
pathways of 43 amino acids accomplishing the propagation of conformational changes during the 
process of aminoacylation. Since the module core amino acids listed in Supplementary Table 2 have the 
largest module assignment value of their module, which often corresponds with high community 
centrality values (community centrality being the sum of all modular assignment values of the given 
node [Kovacs et al., 2010]), these core amino acids often have the highest influence on their own 
module. Thus the involvement of these module core amino acids may enhance the robustness of intra-
protein signal transduction. Importantly, 7 communicating amino acids are module core amino acids of 
modules 1, 3 and 4, which are the modules participating in the intra-protein signalling events 
(Supplementary Tables 2 and 4). Communicating amino acids of the module cores are key factors in 
communication pathways II, III and IV. Interestingly, the only intra-protein signalling pathway not 
represented in module cores, pathway I, is the least frequently used pathway, which was active only in 
2.3% of the simulations in the original publication [Ghosh and Vishveshwara, 2007].  
 
Nodes of the module cores are generally more influential to determine the module function and intra-
domain communication than the rest of the modules. This feature of module cores has also been shown 
in our other studies on protein-protein interaction networks [Mihalik and Csermely, 2011] as well as on 
chromatin networks (Sandhu, K.S., Li, G., Poh, H.M., Quek, Y.L.K., Sia, Y.Y., Peh, S.Q., Mulawadi, 
F.H., Sikic, M., Menghi, F., Thalamuthu, A., Sung, W.K., Ruan, X., Fullwood, M.J., Liu, E., Csermely, 
P. and Ruan, Y. Large scale functional organization of long-range chromatin interaction networks, 
submitted for publication). In our earlier work [Mihalik and Csermely, 2011] module cores were often 
referred as nodes having the highest community centrality in the module. In this earlier work we used 
the NodeLand version of the ModuLand method, which makes a much closer correlation between the 
highest intra-modular community centrality values and largest module assignment values than the 
LinkLand version of the ModuLand method used in the plug-in and in the current paper. 
 
Since the two most important segments of Met-tRNA synthase recognizing the anticodon and 
aminoacylation tRNA regions are in different modules, their communication must involve inter-modular 
regions besides the module cores identified above. Two measures of the ModuLand method [Kovacs et 
al., 2010], the overlap and the bridgeness mark different inter-modular positions. Overlap measures the 
effective number of modules, where the given amino acid belongs. This measure is close to 1, if the 
amino acid is a part of a module core, since in such cases the amino acid essentially belongs to a single 
module. The overlap value is increasing above 1 for amino acids situated equally close to different 
module cores. The bridgeness value involves the smaller of the two modular assignments of an amino 
acid in two adjacent modules. To give the bridgeness value, these smaller values of the modular 
assignment-pairs are summed up for every module pairs. This value is high, if the amino acid belongs 
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more equally to two adjacent modules in many cases, i.e. if it behaves as a bridge between a single pair, 
or between multiple pairs of modules. Such bridging positions correspond to saddles between the 
‘community-hills’ of the 3D community landscape shown on Supplementary Figure 1. Note that the 
bridgeness measure characterizes an inter-modular position of the amino acid between adjacent 
modules, while the overlap measure reveals the simultaneous involvement of the amino acid in multiple 
modules.  
 
The amino acid having the highest overlap value is Tyr531, which is connecting communication 
pathways II and III [Ghosh and Vishveshwara, 2007] as well as modules 1, 2 and 4. Two among the top 
15 bridge amino acids are identified as members of intra-protein pathways. Leu392 has the 7th highest 
bridgeness and the 23rd highest overlap value (top 5%) in the whole network. Leu392 is part of the 
anticodon binding domain, and bridges modules 3 and 4 correlating with this domain. Communication 
pathways I, II and III all go trough Leu392 as their bridging amino acid [Ghosh and Vishveshwara, 
2007]. Trp432 has also a top bridging position (13th, top 2.5%). The high community centrality value 
(43rd highest, top 8%) of Trp432 shows that this amino acid is located in a dense part of the network. 
Trp432 bridges modules 1 and 3, was identified as a key member of communication pathway I, and 
serves as an interface between the catalytic and anticodon binding domains [Ghosh and Vishveshwara, 
2007].  
 
Supplementary Table 4 shows the shortest communication pathway, pathway IV, between the anticodon 
region and the active centre of Met-tRNA synthase. Pathway IV was the most frequently used pathway 
participating in intra-protein signalling processes in 43.3% of simulations in the original publication 
[Ghosh and Vishveshwara, 2007]. Pathway IV starts from His28, which is the 2nd most central amino 
acid of module 1 corresponding to the catalytic domain. The continuation of pathway IV, Ile89, Asp32 
and Asp36 also form a part of module 1. The middle segment of pathway IV propagates through 
Leu495, Tyr357, Asp384 and Lys388, which are at an overlapping region between modules 1, 3 and 4 
corresponding to the stem-contact fold subdomain and the anticodon binding domain. Pathway IV 
converges with other communication pathways at amino acids Asn452, Arg395, Asp456 and Trp461, 
which are all belonging to module 3 corresponding to the anticodon binding domain.  
 
The 43 amino acids of the four pathways transmitting the conformational changes from the catalytic 
centre to the anticodon binding region of Met-tRNA synthase [Ghosh and Vishveshwara, 2007] all have 
higher average community centrality, overlap and bridgeness values than the rest of the protein 
(Supplementary Figure 3 and Supplementary Table 5). The relatively high deviation makes the 
prediction of communicating amino acids from modular data rather difficult, but the results clearly 
indicate the preference of intra-protein signalling for central, overlapping or bridge-like protein regions, 
which in agreement with general assumptions [Csermely et al., 2012; Farkas et al., 2011] and earlier 
findings [Del Sol et al., 2007; Ghosh and Vishveshwara, 2008]. It is of particular note, that Ghosh and 
Vishveshwara [2008] found the structure analyzed in this paper the most flexible structure of the 
enzyme. Modular analysis of the communicating amino acids of this structure showed the participation 
of two separate clique structures, which indicates that the current modularization method offers a more 
detailed picture of highly mobile, flexible systems, than other methods. Communication pathways in 
other tRNA synthases, like the Glu- and Leu-tRNA synthase from various bacteria show a similar 
pattern using several alternative pathways for transmission and showing a convergence of the 
transmission pathways at critical nodes of inter-modular boundaries [Sethi et al., 2009]. Moreover, the 
large overlap between highly mobile and inter-modular network nodes is similar to our earlier finding 
using protein-protein interaction networks, where inter-modular nodes, having both a large bridgeness 
and community centrality at the same time, corresponded to date hubs [Kovacs et al., 2010]. Recent 
studies also uncovered the usefulness of complex centrality measures, similar to the community 
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centrality used here, in the identification of biologically important network nodes [Milenkovic et al., 
2011]. 
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As a summary of our studies, we may say that network communication in general (and the transmission 
of allosteric signals in particular) may preferentially involve two types of nodes: 1.) intra-modular nodes 
forming a module core (often having a high community centrality, i.e. high communication level with 
the rest of the module); and 2.) inter-modular nodes (either bridges preferentially connecting 2 modules 
or overlapping nodes connecting more modules at the same time). Signals may often propagate using 
and alternating sequence of module cores and inter-modular nodes [see also Csermely et al., 2012]. 
 

Structural properties and modular analysis of E. coli and B. aphidicola metabolic networks 
Supplementary Figure 2 illustrates a few key centrality measures of the ModuLand Cytoscape plug-in 
(such as community centrality, bridgeness and betweenness centrality) on the Escherichia coli metabolic 
network. Supplementary Table 6 shows the basic structural properties of the metabolic networks of 
Escherichia coli and Buchnera aphidicola. The number of nodes in the E. coli network is 54% larger 
than that of the B. aphidicola metabolic network, but the E. coli metabolic network has relatively less 
edges, since the average number of neighbours is 5 and 6 in the E. coli and B. aphidicola networks, 
respectively.  
 
To rule out the effects of the different network size in the comparison of network topology measures of 
E. coli and B. aphidicola metabolic networks, we created random samples from the larger E. coli 
network by selecting connected random sub-networks with the same number of nodes or edges that can 
be found in the B. aphidicola network as described in the Methods section of this Supplement in detail. 
In each case we selected 1000 random sample sub-networks of the E. coli metabolic network having an 
equal number of nodes or edges like the B. aphidicola network, and calculated the average values ± the 
standard deviations of network topology measures. Results are summarized in Supplementary Table 6. 
Both the characteristic path length and the network diameter were higher in the E. coli than in B. 
aphidicola, and became even higher both in the node-limited and edge-limited random sample sub-
networks of the E. coli metabolic network.  
 
The above differences together already suggest a multi-centred network structure of the E. coli 
metabolic network as compared to a more centralized network of B. aphidicola. Such a difference is also 
quite prevalent by the visual inspection of the two networks, where the modular structure is multifocal in 
case of E. coli, while it is dominated by the twin super-modules of ATP-synthase and D-glucose 
transport in case of B. aphidicola (cf. Supplementary Figures 4 and 5). The community centrality 
landscape shows a similar pattern having multiple groups of high community centrality in case of E. coli 
and a continuous high community centrality plateau with two local maxima in case of B. aphidicola (cf. 
Supplementary Figures 6 and 7). These observations are in agreement with both our preliminary data 
derived from the visual inspection of the top 40% of reactions [Mihalik and Csermely, 2011], with other 
results showing that environmental variability induces a higher level of modularization in metabolic 
networks [Kreimer et al., 2008; Parter et al., 2007; Samal et al., 2011] and with the recent finding that 
the fraction of active reactions is smaller in metabolic networks evolved to optimize a specific metabolic 
task [Lee et al., 2012].. 
 
We used the ModuLand Cytoscape plug-in to analyze the overlapping module structure of the metabolic 
networks of Escherichia coli and Buchnera aphidicola. The ModuLand plug-in calculated the 
Spearman’s rank correlation values of each module assignment vector pair, and visualized the histogram 
of correlation values. The highest correlation values were 0.687 and 0.468 in the metabolic networks of 
E. coli and B. aphidicola, respectively. Since there were no highly correlated modules, we choose not to 
merge any module pairs. The plug-in also generated higher hierarchical levels of the metabolic network 
modules by taking the modules of the lower level networks as meta-nodes of the next level networks, 
and the module overlaps of the lower level networks as meta-edges of the next level. On the higher 
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levels there was only one module in case of both organisms, so in this case no further hierarchical levels 
were analyzed.  
 
Modular structures of the two metabolic networks are shown on Supplementary Figures 4 and 5. E. coli 
and B. aphidicola metabolic networks had 23 and 8 modules, respectively (a difference of 188%). The 
difference in the number of modules is even more pronounced (192%), if we compare the effective 
number of modules (giving an approximation to the number of modules without overlaps), which was 
6.2 and 2.1 in case of the E. coli and B. aphidicola metabolic networks, respectively (see Supplementary 
Table 7). The larger different average module sizes (12.78 versus 23.75 of E. coli compared to B. 
aphidicola) also suggests a more differentiated module structure of E. coli than that of B. aphidicola in 
agreement with earlier findings [Kreimer et al., 2008; Lee et al., 2012; Mihalik and Csermely, 2011; 
Parter et al., 2007; Samal et al., 2011]. 
 
Since the two metabolic networks significantly differed in size, we also analyzed the main modular 
properties of 1000 random sample networks of the E. coli metabolic networks having the same number 
of nodes or edges like the B. aphidicola metabolic network. Random sample networks were constructed 
as described in Methods. Modularization of these 1000 random sample sub-networks was performed 
using specific scripts running the ModuLand binary programs packaged to the ModuLand Cytoscape 
plug-in. This analysis shows that the differences in the module number and module size related 
parameters are not caused by the different size of the E. coli and B. aphidicola networks (see 
Supplementary Table 7). 
 
Size distribution of the modules was quite different in case of the two organisms (see Supplementary 
Figures 4 through 7). In B. aphidicola metabolic network two largest central modules were found around 
ATPS4rpp (ATP synthase) and GLCptspp (D-glucose transport via PEP:Pyr PTS). Any of these 2 
largest central modules contained more nodes than the union of the rest of the modules. In case of E. coli 
no such central modules were detected having more nodes than the union of the rest of the modules. 
ATP-synthase was located in the central region of the largest E. coli module, while the 3 next largest 
(more-less equally sized) E. coli modules were found around PYK (pyruvate kinase), DRPA 
(deoxyribose-phosphate aldolase) and ASPTA (aspartate transaminase). The centrality of pyruvate 
metabolism in E. coli is in agreement with earlier findings [Guimera and Amaral, 2005], and GLCptspp 
(the central node of the other large B. aphidicola module) is also located in the central region of the 
PYK module of the E. coli network. The high community centrality of ATP synthase in both organisms 
reflects its high involvement of the communication of its direct and more distant network 
neighbourhood. However, the module size differences per se may not be considered as a measure of 
importance/essentiality. 
 
To check the similarity of our E. coli metabolic modules with those determined before by Guimera and 
Amaral [2005] first we converted the reactions of the current networks to metabolites. We restricted this 
analysis to the substrates and products of the reactions belonging to the 10 metabolites forming the 
module cores, since these reactions are the most characteristic to the community structure determined by 
the current plug-in. We compared the metabolites present in both this model and in the KEGG modules 
in the supplement of Guimera and Amaral [2005]. We got 162 or 139 common intra- or inter-modular 
metabolites, respectively, while the number of differentially assigned intra- and inter-modular 
metabolites was 12 and 442, respectively. (Note that the latter number is high, since we took only the 
module core of the current plug-in into consideration in this analysis.) Even with these dissimilar initial 
conditions the two modularizations had a significant (p=1.4 x 10-7) overlap when using the Fisher’s 
exact test. This shows that the two, different modularization techniques identify a statistically similar 
community structure. 
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We also compared the average homogeneity of metabolic functionalities in the modules of the two 
networks. For each module we chose the top ten reactions having the highest module assignment value 
and calculated the average number of subsystems to which these reactions were assigned (subsystem 
annotation was as in the published metabolic network reconstruction). The average number of 
subsystems in case of E. coli modules was 0.53, while the same average for B. aphidicola modules was 
0.67 (the difference is significant, p = 0.0392, using the bootstrap method [Efron and Tibshirani, 1994]; 
where the bootstrap method was used, since the number of B. aphidicola modules was less than 10, 
which precluded the use of the Brunner-Munzel test). This finding shows that metabolic modules of B. 
aphidicola corresponded to significantly more metabolic functions than E. coli modules. This conclusion 
is in agreement with earlier findings [Guimera and Amaral, 2005; Parter et al., 2007] comparing the 
heterogeneity of the KEGG pathway classification of structural modules in the two organisms.  
 
To verify our conclusion, we used the same bootstrap method [Efron and Tibshirani, 1994] on the 1000 
random sample sub-networks selected from the E. coli network in order to have networks with the same 
node or edge number as can be found in the B. aphidicola network. We had very similar average 
subsystem number in the E. coli random sample sub-networks (0.501 and 0.508 when we selected the 
random E. coli sub-networks having an equal number of nodes or edges like those of the B. aphidicola 
network, respectively) than in the original E. coli network (0.53). The difference between the average 
values in case of the E. coli samples and the original E. coli network is not significant (two-sided p-
values are 0.409 and 0.533 for the node-similar and edge-similar case), while the same difference 
between the E. coli sample sub-networks and the B. aphidicola metabolic network remained significant 
(two-sided p-values were 0.021 and 0.0294).  
 
We also created the sub-networks of the 103 common metabolites (see Supplementary Table 8) in the 
two organisms. These sub-networks can be taken as alternative samples of the two metabolic networks 
with the same number of nodes, and they are showing the same patterns as the module structures of the 
original networks. The common nodes in case of B. aphidicola built 17 components with a giant 
component containing 72 nodes (see Supplementary Figure 8), while the common nodes in E. coli 
network formed a more disjoint structure with 52 smaller components, where the largest component had 
only 18 nodes (see Supplementary Figure 9). 
 
For a further verification we checked, if the skewed distribution of module size causing the existence of 
the large centre (in form of a twin of central modules) in the B. aphidicola network may significantly 
contribute to the higher average subsystem number. It is a logical assumption that the twin central 
modules may distort the average value, because of their size and central position. To check their effect, 
first we identified the E. coli modules corresponding to the twin central B. aphidicola modules (having 
the module centres of ATP-synthase and glucose permease, respectively). We calculated the Spearman’s 
rank correlation values between the module assignment vectors of the common nodes for each module-
pairs and choose the seven E. coli modules (having module centres in the E. coli network: PYK, DRPA, 
TMDPP, ACt2rpp, ASPTA, ASPt2pp, FRD3) which have higher than 0.3 correlation with any of the 
twin central B. aphidicola modules. In the next step we generated two module core lists (listing the 10 
metabolites of each module having its largest module assignment values), where we excluded the twin 
central modules in case of B. aphidicola and the corresponding 7 modules in case of E. coli. The 
difference remained significant between the residual modules, too: 0.48 for E. coli and 0.67 for B. 
aphidicola (using bootstrap method [Efron and Tibshirani, 1994], two-sided p-value: 0.0486). We also 
created a hybrid model where the twin central modules of B. aphidicola were ‘substituted’ by the 
corresponding 7 E. coli modules. The average subsystem value was 0.65 for this hybrid model, which 
was still significantly higher than the 0.53 we calculated for the original E. coli network (Brunner-
Munzel test [Brunner and Munzel, 2000], one-sided p-value: 0.0029; here both systems had a larger 
number of modules than 10, which allowed the use of this test). These tests are suggesting that the 
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modules of B. aphidicola and E. coli metabolic networks are organized differently in terms the 
homogeneity of metabolic functionalities and this difference is not due to their different size or to the 
existence of the twin central modules of the B. aphidicola network. 
 
These results indicated that modules of the metabolic network of an organism from a variable 
environment (E. coli) are more specialized than metabolic network modules of a symbiont having a 
constant environment (B. aphidicola). It is noteworthy that our result is in agreement with earlier 
findings using non-overlapping modularization [Parter et al., 2007], which is a further indication after 
our results on protein structure network and former studies on interactomes and chromatin networks 
([Mihalik and Csermely, 2011] and Sandhu, K.S., Li, G., Poh, H.M., Quek, Y.L.K., Sia, Y.Y., Peh, S.Q., 
Mulawadi, F.H., Sikic, M., Menghi, F., Thalamuthu, A., Sung, W.K., Ruan, X., Fullwood, M.J., Liu, E., 
Csermely, P. and Ruan, Y. Large scale functional organization of long-range chromatin interaction 
networks, submitted for publication) that the module cores reflect well the biologically relevant function 
of modules. As a potential mechanism of the divergence in module specialization between the two 
organisms, during the simplification of the B. aphidicola genome by the adaptation to the symbiosis [Pál 
et al., 2006] modules might coalesce and become more multi-functional. This hypothetical scenario, 
however, needs further verification.   
 
Comparing the Moduland plug-in to other clustering plug-ins available for Cytoscape 
Numerous methods were published for determining overlapping clusters [see e.g. Adamcsek et al., 
2006; Ahn et al., 2010; Fortunato, 2010; Kovacs et al., 2010; Palla et al., 2005 and references therein]. 
Moreover, several very useful plug-ins are available for Cytoscape to perform discrete 
modularization/clustering on networks (see Supplementary Table 9). Some of them (like clusterMaker 
or GLay) contain multiple well-known algorithms and unify them on a single user interface providing 
various visualization methods. The MCODE and MINE plug-ins are based on local density measures, 
and therefore are useful to determine and explore clusters quickly. Some plug-ins contain overlapping 
modularization methods, and the two latter methods are faster than the ModuLand method in case of 
large networks. However, the authors are not aware of Cytoscape plug-ins, which focus on overlapping 
module assignment, assign each node of the network to each identified module with different intensities, 
determine several layers of module hierarchy and calculate various network measures based on 
extensively overlapping modules. In the next paragraphs we will give a short summary about all 
Cytoscape plug-ins for modularization/clustering we identified (see also Supplementary Table 8). More 
details can be found on the linked homepage of each plug-in.  
 
GLay plug-in, homepage: http://brainarray.mbni.med.umich.edu/glay. GLay [Su et al., 2010] offers an 
assorted collection of community analysis algorithms and layout functions. Some variants [Wakita and 
Tsurumi, 2007] of the modularity measure-based [Newman and Girvan, 2004] Clauset-Newman-Moore 
algorithm [Clauset et al., 2004] are implemented in Java, so they can be used independently from the 
platform, while many other algorithms (e.g. Walk Trap [Pons and Latapy, 2006], Label Propagation 
[Raghavan et al., 2007], Spin Glass [Reichardt and Bornholdt, 2006] and Leading Eigenvector 
[Newman, 2007]) are used from the igraph library5 implemented in C language and can be run only on 
Windows platform.  
 
clusterMaker plug-in, homepage: http://www.cgl.ucsf.edu/cytoscape/cluster/clusterMaker.html. The 
clusterMaker plug-in [Morris et al., 2011] integrates many different clustering techniques and makes 
them available on a single interface. The current implementation supports clustering algorithms like k-
medoid [Sheng and Liu, 2006] or hierarchical and k-means [Bishop, 1995]. The output of these methods 
can be displayed as hierarchical groups of nodes or as heat maps. The plug-in also supports Markov 
                                                 
5 igraph library: http://igraph.sourceforge.net/  
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clustering [Enright et al., 2002], transitivity clustering [Wittkop et al., 2010], affinity propagation [Frey 
and Dueck, 2007], MCODE [Bader and Houge, 2003], community clustering (a CNM variant from the 
GLay plug-in), SCPS [Nepusz et al., 2010], and also AutoSOME [Newman and Cooper, 2010] for 
partitioning networks based on similarity or distance values.  
 
MCODE plug-in, homepage: http://baderlab.org/Software/MCODE. The MCODE is a relatively fast 
clustering method [Bader and Houge, 2003], based on vertex weighting by local neighbourhood density 
and outward traversal from a locally dense seed node to isolate the dense regions according to given 
parameters. In the plug-in, the user has the possibility to fine-tune the clusters of interest (to increase or 
decrease the cluster size limit) without considering the rest of the network. 
 
MINE plug-in, homepage:  http://chianti.ucsd.edu/cyto_web/plugins/displayplugininfo.php?name=MINE. The 
MINE algorithm [Rhrissorrakrai and Gunsalus, 2011] was developed to discover high quality modules 
of gene products within highly interconnected biological networks. MINE is an agglomerative clustering 
algorithm very similar to MCODE, but it uses a modified vertex weighting strategy and can factor in a 
measure of network modularity, both of which help to define module boundaries by avoiding the 
inclusion of spurious neighbouring nodes within growing clusters.  
 
NeMo plug-in, homepage: http://128.220.136.46/wiki/baderlab/index.php/NeMo. NeMo is a Cytoscape 
plug-in for unweighted network clustering. The method [Rivera et al., 2010] combines a specific 
neighbour-sharing score with hierarchical agglomerative clustering to identify diverse network 
communities. NeMo is based on a score that estimates the likelihood that a pair of nodes has more 
common neighbours than expected by chance.  
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