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A B S T R A C T

Drug resistance is a major cause of tumor mortality. Signaling networks became useful tools for driving phar
macological interventions against cancer drug resistance. Signaling datasets now cover the entire human cell. 
Recently, network adaptation became understood as a learning process. We review rapidly increasing evidence 
showing that the development of cancer drug resistance can be described as learning of signaling networks. 
During drug adaptation, the network forgets drug-affected pathways by desensitization and relearns by 
strengthening alternative pathways. Thus, resistant cancer cells develop a drug resistance memory. We show that 
all key players of cellular learning (i.e., IDPs, protein translocation, microRNAs/lncRNAs, scaffolding proteins 
and epigenetic/chromatin memory) have important roles in the development of cancer drug resistance. More
over, all of them are central components of the epithelial-mesenchymal transition leading to metastases and 
resistance. Phenotypic plasticity was recently listed as a hallmark of cancer. We review how network plasticity 
induces rare, pre-existent drug-resistant cells in the absence of drug treatment. Key network methods assessing 
the development of drug resistance and network pharmacological interventions against drug resistance are 
summarized. Finally, we highlight the class of cellular memory drugs affecting cellular learning and forgetting, 
and we summarize current challenges to prevent or break drug resistance using network models.

1. Introduction

Cancer is one of the foremost causes of mortality globally. The 
American Cancer Society estimated 4 new cases and 1 death from cancer 
in every minute in 2024 in the USA alone [1]. Drug resistance continues 
to be the principal limiting factor in curing cancer patients. Emergence 
of resistance often leads to the development of a more invasive type of 
tumor and metastases. Thus, prevention or circumvention of drug 
resistance is a key task of modern anticancer pharmacology. Drug 
resistance often occurs by decreased drug uptake/increased drug efflux 
[2], by mutations in drug target(s) [3,4], by disruption of cell cycle ar
rest and/or apoptosis [2,5] and, importantly, by restoration of cell 
proliferation [5]. Important contributors to these processes are: 1.) 

activation of alternative signaling pathways (by post-translational 
modifications, by changes both in protein/microRNA/long noncoding 
RNA (lncRNA) levels and in chromatin structure as well as by muta
tions); 2.) genomic instability leading to increased mutagenesis; 3.) 
changed alternative splicing and 4.) increased cellular noise [6–11].

Molecular networks of individual cells are mainly built from protein- 
protein interaction (PPI) networks (interactomes). In interactomes, 
network nodes are proteins and network edges are their physical con
nections. A significant part of human PPI networks participates in signal 
transduction by forming signaling networks (signalomes), which include 
several noncoding RNAs, such as microRNAs or lncRNAs. Nodes of gene 
regulatory networks are proteins (e.g. transcription factors, final protein 
products, epigenetic regulators, etc.), DNA segments and RNAs (such as 
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mRNAs). Genetic interaction networks are also used, where nodes are 
products of gene transcription and edges are correlations between their 
expression levels. Finally, nodes of metabolic networks are small 
metabolite molecules (such as oxaloacetate, citrate, etc.) and their edges 
are chemical reactions (associated with specific enzymes catalyzing the 
process) which convert metabolites to each other [5,12,13].

We focus on signaling networks, since they are involved in targeted 
anticancer therapy design the most. Recently, a number of signaling 
network datasets became available which now cover a large part or the 
entire human proteome [4,14–18]. Recent findings indicated that 
signaling networks are able to learn (i.e. produce a faster, stronger and 
more stable signal after a stimulus is repeated a few times). Networks 
learn by increasing the strength of the interactions between their com
ponents (a process, which is similar to the well-known Hebbian 
learning (see Glossary) of neuronal connections) and by network 
reconfiguration [19–29]. Examples of connection strength increases 
during cellular learning include the transient conformational memory 
of intrinsically disordered proteins (IDPs), protein translocation and 
increased microRNA or lncRNA levels. Epigenetic memory, chromatin 
memory and scaffolding proteins of signaling cascades are major 
contributors to connection strength (i.e. network edge weight) 
enhancement of signaling networks. Learning of individual cells builds 
cellular memory. Reconfiguration of the memory of healthy cells may 
lead to tumor transformation. Similarly, loss of cellular memory 
(cellular forgetting often involving pathway desensitization corre
sponding to the anti-Hebbian learning of neuronal cells) may lead to 
dedifferentiation, which may open the way to metastasis or cancer stem 
cell formation [19–27].

We first summarize the key changes in the structure of single cancer 
cell signaling network during drug resistance development. Next, we 
show how learning, memory formation and forgetting of the signaling 
network contribute to cancer drug resistance. We highlight the role of 
network robustness and network plasticity. We list key examples of 
network methods assessing drug resistance development. Finally, we 
conclude with the pharmacological possibilities of preventing or 
combating cancer drug resistance using network pharmacology and 
cellular memory drugs, i.e. drugs or drug combinations based on 
cellular learning or cellular forgetting.

2. Network structure changes in drug resistance development

Network modules, i.e. groups of network nodes which are more 
densely connected with each other than to their neighborhood, are key 
components of network structure. Disease modules utilize the fact that 
proteins associated with the same disease (like various types of cancer) 
tend to be co-localized in the same neighborhood of PPI networks [30]. 
A recent work from the group of Albert-László Barabási added microRNA 
and lncRNA connections to protein-protein interactions, thus extending 
the human PPI network size by 46 % and adding 132 novel disease 
modules to the original 505 [31].

Drug resistance associated modules of PPI networks are often called 
resistomes. The word resistome was originally coined for segments of 
bacterial PPI networks containing proteins overexpressed in antibiotics- 
resistant bacteria. However, the term was also expanded to several sub- 
networks of the human PPI network centered around key components of 
cancer drug resistance development, such as focal adhesions (including 
e.g. αVβ1-integrin and the focal adhesion kinase, FAK [32]); the 
mammalian target of rapamycin (mTOR [33]); nuclear factor-kappa B 
(NFκB [34]) or hypoxia-inducible factor (HIF [35]).

Network modules highlight an important role of the neighborhood of 
key signaling components and drug targets participating in drug resis
tance development. Network neighbors of cancer related proteins have a 
key role in cancer pathogenesis [36]. Driver mutations of cancer pro
gression are neighbors of signature genes, whose expression can be used 
as a prognostic marker of metastasis and survival of breast tumors [37]. 
Neighbor-targeting was suggested as a key drug design strategy, 

especially in late-phase cancers [12].
Signaling network modules often encode signaling pathways and 

their associated scaffolding proteins. Re-directing signaling from those 
signaling routes which became blocked by an anticancer drug (e.g. re
ceptor tyrosine kinases/growth factor receptors by their inhibitors) to 
alternative pathways is a frequent mechanism of drug resistance 
development [38]. While the MAPK/PI3K (mitogen-activated protein 
kinase/phosphoinositide 3-kinase) core pathway operates mainly in 
differentiated cells, the Hippo-WNT-Notch-Hedgehog MYC-inducing 
core pathways are more characteristic to stem cells. Blocking one core 
pathway usually activates the other and develops drug resistance. 
However, as an example, the combination therapy applying PI3K/AKT 
inhibitors together with the WNT/β-catenin pathway blocker, Tankyrase 
repressed the growth of PI3K/AKT inhibitor-resistant colon cancer [7, 
11]. We will detail network-based pharmacological interventions 
against drug resistance in Section 6.

3. Learning, memory and forgetting of signaling networks in 
drug resistance

Cancer cells learn to survive in the presence of anticancer drugs. In 
this process, they ’forget’ (i.e. desensitize, down-regulate, avoid, 
circumvent) a number of usual pathways which are affected by the drugs 
[27]. Consequently, cancer cells relearn to upregulate, activate alter
native pathways and develop resistance memory [39–42]. In this sec
tion, we summarize the major signaling mechanisms of these processes.

3.1. Cellular learning and memory mechanisms in drug resistance 
development

As we summarized in Section 1, cellular learning and formation of 
single-cell memory involves IDPs, protein translocation, scaffolding 
proteins, increased microRNA/lncRNA levels, as well as epigenetic and 
chromatin memory [19,21–28] (Fig. 1). As examples of the many, MYC 
and the focal-adhesion-associated paxillin are two key IDPs involved in 
the development of drug resistance [43]. Inhibitors of ERK (extracellular 
signal-regulated kinase) nuclear translocation emerged as potential 
agents against drug resistance [44]. Various scaffolding proteins, such as 
β-arrestin [45], caveolin-1 [46], CAS (Crk-associated substrate) family 
proteins [47] as well as fibroblast-growth factor receptor substrate 2 
(FRS2) and C2-domain containing protein 1 A (CC2D1A) [48] are 
involved in resistance development against anticancer drugs blocking 
the MAPK/WNT/β-catenin, PI3K/AKT, estrogen receptor–related or 
ALK (anaplastic lymphoma kinase) pathways.

Both microRNAs and lncRNAs play a key role in drug resistance 
development [9,49,50]. MicroRNAs are small noncoding RNAs (18–22 
nt in length) that act as negative regulators of gene expression through 
the modulation of multiple target mRNAs and by inhibition of trans
lation. The microRNAs miR-15b, miR-16, miR-22, miR141 and miR-495 
participate in the development of chemotherapy resistance [9,49]. 
MicroRNAs act through multiple pathways, including 1.) cell cycle and 
proliferation control (e.g. miR-224); 2.) survival and/or apoptosis 
pathways; 3.) DNA repair; 4.) drug targets; 5.) drug transporters (such as 
the adenosine triphosphate–binding cassette, ABC, transporter pro
teins); 6.) drug metabolism (e.g. miR-24; miR-508–5p) and 7.) the 
epithelial-mesenchymal transition (EMT; e.g. miR29c, miR146b, 
miR-200 and miR-224) [9,49,51]. MicroRNAs (such as miR-34, 
miR-125b, miR140 and miR215) also play a role in conveying drug 
resistance to cancer stem cells [49]. Thus, microRNAs act at almost all 
steps of cellular memory development.

LncRNAs are mRNA-like transcripts from 0.2 to ~100 kb in length 
that lack characteristic open reading frames. LncRNAs modulate drug 
metabolism (e.g. H19 and HOTAIR lncRNAs), increase drug efflux (e.g. 
PVT1, MRUL and MALAT1 lncRNAs), inhibit apoptosis (e.g. ERIC, 
PDAM, PCGEM1 and CUDR lncRNAs) and activate EMT (e.g. CCAT1 and 
MALAT1 lncRNAs [50]). LncRNAs (e.g. the XIST, LARRPM, LINC-PINT 
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and WT1 lncRNAs) interact with ten-eleven translocation (TET) dioxy
genases [52]. Several lncRNAs (e.g. the MIAT, LINP1, SNHG7 and 
HOTAIR lncRNAs) interact with DNA methyltransferases [52]. LncRNAs 
redirect chromatin remodeling complexes [49]. Thus, lncRNAs modu
late nuclear reprogramming and the development of chromatin 
memory.

Epidrugs, i.e. inhibitors of epigenetic modifying proteins, which 
induce epigenetic inheritance, such as DNA methyltransferase, histone 
deacetylase, histone methyltransferase and histone methylase were 
successfully used in combination with standard-of-care drugs to prevent 
or delay the development of drug resistance [8,9,25,53]. All these 
epigenetic modifications are involved in the development, maintenance 
and erasure of chromatin memory.

3.2. Interplay between cellular memory mechanisms in drug resistance 
development

Cellular memory mechanisms do not work independently from each 
other, but form a large network, and are in a continuous interplay. 
MicroRNAs and lncRNAs already form a network, where lncRNAs 
upregulate microRNA expression in several types of cancer (e.g. 
LINC00114 upregulates microRNA-133b in colorectal cancer, HOTAIR 
upregulates microRNA-141 in glioma, and HOXA11-AS upregulates 
microRNA-200b in non-small cell lung cancer), which leads to increased 
cell proliferation and tumor growth [52]. LncRNAs modify both 

chromatin memory and epigenetic changes [49,50,52]. MicroRNAs, 
lncRNAs and the chromatin are regulated by, and also modify, the 
signaling network [9,49,50,52], which contains IDPs, scaffolding pro
teins and themselves (Fig. 2).

3.3. Drug resistance development as forgetting and relearning of cancer 
cells

In summary, all the key players of cellular learning and cellular 
memory formation (i.e. IDPs, protein translocation, microRNAs/ 
lncRNAs, scaffolding proteins and epigenetic/chromatin memory) play 
an important role in the development of cancer drug resistance. More
over, all of them are central components of EMT, a crucially important 
cellular transformation that leads to cancer metastases and accompanies 
the development of drug resistance [19,51,54,55]. Thus, cancer cells 
mobilize their entire network structure to learn survival during cancer 
progression. This view is in agreement with that of Shomar et al. [56], 
who described cancer progression as a learning process. Cancer cells 
reconfigure their cellular memory [26,28] through cellular forgetting 
and relearning [27] during drug resistance development. Drug resis
tance can be regarded as a form of habituation (i.e. a decrease of the 
response level to at least 50 % of the original response after a too 
frequently repeated stimulus—a concept used in neuronal learning 
processes [23,26]). Mechanisms of drug resistance development involve 
a reconfiguration of signaling pathways with both connection strength 

Fig. 1. Learning of signaling networks during the development of cancer drug resistance. a.) Several key proteins of drug resistance development, such as MYC 
and paxillin, are IDPs contributing to cellular memory formation by their conformational memory. b.) MicroRNAs (interacting with the cell cycle, survival/apoptosis 
signaling, DNA repair, drug targets, drug transporters/ABC proteins and EMT) and lncRNAs (interacting with e.g. DNA-methyltransferases and ten-eleven trans
location, TET dioxygenases) play an important role both in cellular learning and emergence of drug resistance. c.) Scaffolding proteins (such as β-arrestin, caveolin-1, 
CAS family proteins, fibroblast growth factor receptor substrate 2 (FRS2) or C2-domain containing protein 1 A (CC2D1A) are also involved both in learning of 
signaling networks and in increased drug resistance. d.) Finally, epidrugs, i.e. inhibitors of chromatin memory proteins such as DNA methyltransferase (DNMT), 
histone deacetylase (HDAC), histone methyltransferase and histone methylase (both abbreviated as HMT) were successfully used against drug resistance develop
ment. Ac = acetyl group. Me= methyl group. e.) All these four mechanisms of cellular memory formation (i.e. IDPs, microRNAs/lncRNAs, scaffolds and chromatin 
memory) are involved in epithelial-mesenchymal transition, which often accompanies drug resistance development. f.) Drug resistance development mechanisms 
reconfigure signaling pathways using connection strength increases and decreases corresponding to Hebbian learning (cellular memory formation), and anti-Hebbian 
learning (targeted cellular forgetting) at the signaling network level, respectively. Created with Biorender.com.

D. Keresztes et al.                                                                                                                                                                                                                               Biomedicine & Pharmacotherapy 183 (2025) 117880 

3 



(i.e. network edge weight) increases and decreases. Connection strength 
increases correspond to Hebbian learning (cellular memory formation 
[19]). Connection strength decreases correspond to anti-Hebbian 
learning (targeted cellular forgetting [27]). Thus, signaling networks 
both forget, and relearn during drug resistance development using a 
number of mechanisms, including the desensitization of drug-affected 
pathways, upregulation of alternative pathways, feedback loops, 
(often microRNA-based) feedforward loops, chromatin memory and 
consequent, stabilizing mutations [7,11,39–42]. We note that more 
complex patterns of memory than loop-structures (such as multiple 
feedback loops or concatenated feedforward loops) also often occur in 
networks [22,23,28,29], and networks may also develop memory 
through their recurring dynamic states without consolidating a specific 
structural pattern [23]. All these processes lead to the development of 
drug resistance memory [39–42,57,58] (Fig. 3; see also Section 4.).

4. Network plasticity as an inducer of drug resistance

Phenotypic plasticity of cells was recently incorporated as a hallmark 
of cancer [59], and it induces drug resistance [60]. Plasticity of the 
epithelial-mesenchymal transition is an important mark of its contri
bution to cancer metastasis [61]. Network plasticity, i.e. the ability of 
fast network reconfigurations as a response to external stimuli, and 
network robustness are both increased in cancer cells, which leads to the 
appearance and maintenance of dynamically changing cellular hetero
geneity [39,60,61]).

4.1. Network plasticity in the development of an early, rare drug-resistant 
cell population

Adaptation of the signaling network induces acquired resistance in 
the whole cell population. However, network plasticity helps the 
emergence of intrinsic drug-resistance in a rare subpopulation 
(approximately one of 3000 cells) of cancer cells even in the absence of 
drug treatment. Moreover, this transient drug-resistant state may 
become stabilized and live through two to six generations of dividing 
cancer cells. Dynamic and long-lived, rare but coordinated fluctuations 
in gene expression (including long transcriptional bursts) are major 
sources of pre-existent drug-resistant cells. These and other sources of 
noise (such as the fluctuating protein conformations of IDPs or higher 
chromatin accessibility) are crucially important to raise cellular het
erogeneity (including pre-existent drug-resistant cells) in cancer cell 
populations [24,25,42,57,58,62]. These pre-existent drug-resistant cells 
have been shown to become often dormant, reducing their proliferation 
rate, which helps their initial escape from several anticancer drugs tar
geting cell division mechanisms [56]. In breast cancer cells treated by 
protein kinase/phosphatase inhibitors, the signaling network has been 
shown to become heterogeneously resistant to the drug, which shows an 
important sign of network plasticity [63]. Importantly, network plas
ticity and the relatively high noise of cancer cells themselves re-induce 
the drug dependent state, if the drug administration is ceased. This is the 
reason why re-sensitization to a repeated drug challenge occurs, and 
why ’drug holiday’ became an important treatment option for cancer 
patients [64,65] (see Section 6.1.).

Fig. 2. Interplay between cellular memory mechanisms in drug resistance development. Cellular memory mechanisms create a rich interaction network with 
each other. LncRNAs and microRNAs form a network, where lncRNAs upregulate microRNA expression in several types of cancer (e.g. LINC00114 upregulates 
microRNA-133b in colorectal cancer, HOTAIR upregulates microRNA-141 in glioma and HOXA11-AS upregulates microRNA-200b in non-small cell lung cancer), 
which leads to increased cell proliferation, tumor growth and drug resistance. LncRNAs modify both chromatin memory and epigenetic changes. MicroRNAs, 
lncRNAs and the chromatin are regulated by, and also modify, the signaling network containing downregulated drug-affected signaling pathways, upregulated 
alternative pathways, intrinsically disordered proteins (IDPs), scaffolding proteins, as well as lncRNAs, microRNAs and the chromatin themselves. miR = microRNA. 
Created with Biorender.com.
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4.2. Drug-resistant cell plasticity induced by the tumor microenvironment

Tumor microenvironment increases the plasticity of cancer cells, 
which helps the emergence of their drug-resistant phenotype [66]. As an 
important example of this process, cancer-associated fibroblasts increase 
the plasticity of tumor organoids, i.e. 3D multicellular clusters derived 
from patient tumors. A crucial part of this transition is the shift from a 
proliferative state to a slow-cycling, dormant state, which protects 
cancer cells from chemotherapy [67]. Tumor microenvironment helps 
the metabolic reprogramming of cancer cells, which leads to an 
enhanced plasticity of the epithelial-mesenchymal transition [68]. Due 
to the hypoxic environment, cancer cells lose the oxidative phosphory
lation in their mitochondria. However, after their 
epithelial-mesenchymal transition, they may regain oxidative phos
phorylation (increasing their metabolic plasticity, as well as helping 
their motility and drug resistance) by receiving mitochondria from 
surrounding mesenchymal stem cells [69]. Tumor microenvironment 
also helps the activation of stemness pathways, which leads to cancer 
stem cell formation [70]. Cancer stem cells have an extremely plastic 
network structure [71]. Importantly, cancer cells also increase the 
plasticity of their neighbors, such as that of tumor-associated macro
phages, which leads to macrophage-myofibroblast and 
macrophage-neuron transitions [72]. By increasing the plasticity of their 
neighborhood, cancer cells convert their surrounding environment to a 
supportive niche [73].

4.3. Resistance memory: stabilization of the early, drug-resistant state

The network plasticity–induced, pre-existent, rare drug-resistant 
state may acquire a long-lasting stability and may generally charac
terize (almost) the entire cancer cell population after a (longer) drug 
treatment. Such resistance-stabilization is helped by a number of 
mechanisms inducing resistance memory of cancer cells. Multiple layers 
of feedback loops play an important role in the development (e.g. by 
positive feedback loops) and maintenance (e.g. by negative feedback 
loops or by microRNA-based feedforward loops) of cellular resistance 
memory [39–42]. Chromatin memory is also an important contributor 
to resistance memory development [57,58]. Resistance memory be
comes stabilized in several cell generations by mutations, which may 
also induce cancer stem cell formation [42,57]. Signaling memory is 
robust to noise. Lowered noise (by e.g. tissue integration of previously 
migrating drug-resistant cancer cells) helps the maintenance of the 
drug-resistant state. However, in a few cases (especially in high stress 
conditions, and in cancer cells having a gradual kill curve needing 
higher drug levels), noise may also increase the development of resis
tance memory [39,42].

4.4. Network robustness in drug resistance development

The seminal paper of Hiroaki Kitano [39] on cancer as a robust system 
defined network robustness as an ability of cellular adaptation 
(learning), as well as tolerance of fluctuations in protein-protein in
teractions and stochastic noise (of e.g. transcriptional and translational 
processes). Robustness of molecular networks is enhanced by feedback 

Fig. 3. Forgetting and relearning of signaling networks during cancer drug resistance development. Cancer cells reconfigure their cellular memory through 
cellular forgetting and relearning during drug resistance development. This process involves the reconfiguration of the signaling network with both connection 
strength increases and decreases corresponding to Hebbian learning (cellular memory formation) and anti-Hebbian learning (targeted cellular forgetting), respec
tively. Forgetting and relearning mobilizes a number of mechanisms, including the desensitization of drug-affected pathways, upregulation of alternative pathways 
feedback loops, (often microRNA-based) feedforward loops, chromatin memory and consequent, stabilizing mutations. We note that more complex patterns of 
memory than loop-structures (such as multiple feedback loops or concatenated feedforward loops) also often occur in networks, and networks may also develop 
memory through their recurring dynamic states without consolidating a specific structural pattern. These lead to the development of drug resistance memory. 
Created with Biorender.com.
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controls, redundancy (i.e. the property that functionally equivalent 
network parts, such as signaling pathways can substitute each other) and 
network modularity (i.e. separation of network groups from each other 
to prevent the spread or amplification of local perturbations). Cancer 
cells display an increased robustness, which is enhanced by multiple 
layers of feedback loops and genomic instability, as well as by cellular 
heterogeneity [39]. Cellular heterogeneity leads to various interactions 
between tumor cell types, stromal cells, the extracellular matrix, im
mune cells and the vasculature increasing the robustness further [39]. 
Protein-protein interaction and gene regulatory networks of cancer cells 
have higher robustness than those of healthy cells [40].

Networks with an onion structure (i.e. a structure having a dense, 
central core of network nodes surrounded by consecutive layers of more 
and more peripheral nodes, where intra-layer connections are denser 
than inter-layer connections) was shown to be much more robust both to 
attacks of its hubs (i.e. nodes having the highest number of neighbors) or 
of randomly selected nodes [74]. Core/periphery network structures 
with distinct peripheral network modules weakly attached to the 
network core but not to other peripheral node groups were also shown to 
display a high robustness [75]. It is an open question whether such onion 
or other core/periphery structures play a role in drug resistance 
development.

Key publications from László-Albert Barabási and his group described 
network controllability, where a few nodes direct networks to a desired 
state (i.e. from cell proliferation to apoptosis) [76], as well as network 
resilience (i.e. the ability of networks to adjust their structure to retain 
functionality when errors, failures and environmental changes, such as 
cancer drug treatments occur [77]). However, until now, neither 
controllability nor network resilience changes were calculated for can
cer cells acquiring drug resistance. As a first step of these investigations, 
the important contributions from Michael Levin and colleagues [22,23, 
26,29] showed that transcriptional networks possess memory (which 

increases during differentiation), and are more controllable to break 
habituation (which corresponds to drug resistance development) than 
random pairs.

5. Network methods assessing the development of drug 
resistance

Structural analysis of protein-protein interaction networks extended 
with microRNAs and lncRNAs revealed the existence of disease modules, 
i.e. densely connected groups of network nodes associated with e.g. 
several types of cancer [31]. Drug resistance–associated network mod
ule analysis identified e.g. SPTBN1 (a cytoskeletal component of the 
spectrin family), LSMP1 (a protein protecting the lysosomal membrane 
against hydrolysis), miR-92a, miR-124 and additional 17 microRNAs, as 
well as the lncRNAs UCA1, GAS5 and LINC-ROR as drug resistance
–associated proteins or noncoding RNAs, respectively [49,78,79]. 
Assessment of drug resistance development requires the comparison of 
two or more network structures of the drug-sensitive and the (increas
ingly) drug-resistant cells. This is usually performed by machine 
learning methods or by network common component analysis. These 
methods identified e.g. the keratin gene family (KRT5, KRT6A, KRT13, 
KRT14 and KRT15) as proteins involved in the development of gefitinib 
and erlotinib resistance, as well as the histone deacetylase inhibitor 
trichostatin A as a candidate adjuvant for the prevention/reversion of 
docetaxel resistance [53,80] (Table 1).

Since the function of signaling networks is crucially linked to the 
transmission of perturbations, methods related to network dynamics 
became increasingly important to analyze the development of drug 
resistance. However, the assessment of network dynamics is computa
tionally costly. Therefore, initially only relatively small (up to a few 
dozen nodes) dynamic signaling networks were examined, where 
Boolean dynamics were often applied. Boolean dynamics use activating 

Table 1 
Network methods assessing the development of drug resistance.

Method’s name Network Cancer type Brief description Ref.

Methods assessing network structure
Disease module PPI + microRNA + lncRNA Various Determination of local network modules of disease-associated gene 

products
[31]

​ Gene coexperession network Hepatocellular 
carcinoma

Drug-resistance associated network module identification [114]

​ MicroRNA + lncRNA + drugs Various RNA/drug network association and network module identification using 
machine learning

[49, 
78]

DRdriver Gene regulatory network of specific, drug- 
resistant patients

8 cancer types Networks of resistance-specifically mutated genes, their regulators and 
targets, drivers of most differentially expressed gene identified by genetic 
algorithm

[115]

NetSCCA Multilayer gene networks Gefitinib- and 
erlotinib- 
sensitive and 
-resistant cells

EGFR CRISPR knockout screen combined with network-constrained 
sparse common component analysis of sensitive and resistant cells

[80]

DryNetMC Time course RNASeq gene regulatory 
network

Glioma Network topology, network entropy and expression dynamics 
characterization on a ~50 node network

[116]

Methods analyzing network dynamics
Boolean 51 node dynamic signaling network Breast cancer Boolean dynamic model of 6 signaling pathways (IGF1R, HER2/3, PI3K, 

MAPK, AKT, mTORC, ER)
[84]

​ MALAT− miR− 145 − KLF4 − BMI1-Sp1 Non-small cell lung 
cancer

Regulatory circuits of miR− 145 [82]

​ FLT3 tyrosine kinase internal tandem 
duplication network

Acute myeloid 
leukaemia

Personalized predictive models of the signaling landscape of affected 
patients

[81]

Boolean and protein 
translocation

Epithelial-mesenchymal transition Various Shows different functions before and after protein translocation [51]

Global sensitivity 
analysis

ErbB2/3 signaling network Ovarian cancer Multiparametric network perturbations using 54 ordinary differential 
equations and 91 parameters

[117]

Pathway dynamics 
analysis

Signaling network of 14 phosphoproteins Colorectal Pathway dynamics analysis from phosphoprotein patterns after drug 
perturbations

[83]

VESPA Signaling network 7-point 
phosphoproteomic time series

Colorectal Virtual enrichment signaling protein analysis: machine learning of drug 
perturbation adaptations

[85]

Turbine Simulated Cell Various Difference equation-based simulation of signal propagation in a large- 
scale human signaling network to reveal best few from 66,348 drug 
combination/cell line pairs

[86]
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or inhibiting connections. The signaling status of each network node is 
described by ON or OFF states. Thus, Boolean dynamics is binary: 
showing either full activation or full inhibition. The interplay of con
nections is marked by the logical operators AND, OR and NOT. AND 
means that the involved connections are all needed for activation. OR 
means that any one of them is enough. NOT inverts the node status: if it 
was ON, it becomes OFF, and vice versa [81–84].

Boolean methods identified (among many others) the JNK pathway 
and miR-145 potentially playing a role in drug resistance of acute 
myeloid leukemia and non-small cell lung cancer, respectively [81,82]. 
Co-blockade of glycogen synthase kinase 3 (GSK3) and the 
MYC/CDK4/CDK6 axis (or GSK3 and mTORC1) were also shown as 
potential treatment options in case of MEK (mitogen-activated protein 
kinase kinase) inhibitor (or PI3K inhibitor) resistance [83,84]. Propa
gation of multiple perturbations in larger signaling networks emerged as 
a modeling option only recently. Analysis of time series of phospho
proteomic patterns during drug treatment [85] is a promising method to 
study drug resistance development and to propose treatment options to 
prevent or inhibit its emergence. The Simulated Cell model uses 
discrete-time difference equation–based perturbation propagation in a 
large-scale signaling network. This method results in an in silico estimate 
of cell survival after drug treatment. The model calculates the contin
uous state of signaling nodes between full inhibition and full activation. 
Simulated Cell uses manually curated signaling networks customized to 
specific cancer cells by RNA expression and mutation patterns. The 
method was successfully used to predict the best few from 66,348 drug 
combination/cell line pairs [86].

6. Network pharmacology and cellular memory drugs 
combating drug resistance

Combination therapy emerged early on as an important treatment 
modality against cancer. Network pharmacology uses the rich infor
mation encoded by molecular networks of cancer cells to suggest drug 
combinations based on the network proximity of potential drug target 
proteins in e.g. disease modules, i.e. densely connected network node 
groups associated with the particular type of cancer [87,88].

6.1. Network pharmacology–based therapy options against drug 
resistance

Network-based combination therapy options include blocking 
different targets a.) in the same pathway; b.) in redundant pathways 
(using isoforms, e.g. Ras/K-Ras/H-Ras, EGFR/ErbB2/3, etc.); c.) in 
parallel pathways (like the pairs RTK/JAK-STAT or Hippo-YAP1/WNT- 
ß-catenin, both pairs stimulating cell proliferation); and in d.) 
compensatory pathways (like MAPK inducing sufficiently high protein 
levels and PI3K/AKT/mTOR inducing cell growth, both needed for 
proliferation [7,11]). An important recent development that the para
doxical activation of the MAPK pathway (by e.g. the PP2A inhibitor 
LB-100) together with cell cycle checkpoint inhibition by WEE1 or CHK1 
inhibitors developed resistant cells that have not increased but much 
reduced tumorigenicity [89]. Recent work examined 684 drug combi
nations in 97 cancer cell lines using a large-scale dynamic model of 
cancer cell signaling networks and showed the synergy between drugs 
affecting DNA damage response pathways. The easy interpretability of 
network models helps to understand synergy mechanisms, which is at 
least as important in clinical applications as synergy itself [86]. These 
approaches may significantly speed up the drug development process 
and may lead to the discovery of unusual drug combinations, which 
often suggest a repurposing of existing drugs against completely 
different diseases than cancer. Network methods may also bring 
nonconventional drug targets to the discovery-channel, like those 
network neighbors which are adjacent network nodes to proteins 
involved in cancer development [12,36,37].

Ceasing anticancer therapy administration may lead to re- 

sensitization against the drug due to network plasticity-induced 
changes in the already existing drug-resistant cells (which often have 
not yet acquired mutations or extensive network changes stabilizing the 
drug-resistant state). Intermittent treatment protocols (including ’drug 
holidays’) became an important treatment option in gefitinib-resistant 
lung adenocarcinoma or encorafenib/vemurafenib-resistant melanoma 
[64,65,90]. As Sui Huang used the Nietzschean saying for cancer cells: 
“what does not kill me, makes me stronger”, chemotherapy treatments 
often induce very aggressive tumors, which complete an 
epithelial-mesenchymal transition, with increased metastatic potential 
and cancer stem cell formation. Here, cancer cells are shifted to ’rebel
lious’, more malignant attractor states by the stress and (partial) cell 
killing by the treatment itself [91]. Maintenance therapy, i.e. a therapy 
with extended duration (and potentially with lower drug doses) was 
introduced as early as 1956 [92]. Differentiation therapy is a successful 
option in acute promyelocytic leukemia, with a combined treatment of 
retinoic acid and arsenic. Differentiation therapy may re-differentiate 
cancer stem cells to progenitor cells incapable of self-renewal, reduce 
cancer cell heterogeneity, induce cell dormancy and may reverse the 
EMT [39,93,94].

6.2. Cellular memory drugs: an emerging new option against drug 
resistance

The signaling network of the cell can be trained to reconfigure its 
cellular memory [26–28,95]. A large number of the above listed treat
ment options use cellular memory drugs, i.e. drugs affecting the for
mation of cellular memory (differentiation therapy) or the induction of 
cellular forgetting (’drug holidays’, maintenance therapy; Fig. 4). 
Several emerging treatment protocols use sequential therapy, where first 
a drug against the network plasticity–induced pre-existent dru
g-resistant cells is administered, which is then followed by targeted 
therapy (such as e.g. that of combined BRAF, MEK, etc. inhibitors). 
These drugs include IGF1-receptor inhibitors, PI3K inhibitors, or epi
drugs, i.e. inhibitors of epigenetic modifying enzymes, such as 
DNA-methyltransferases, histone deacetylases, histone methyl
transferases or histone demethylases. Importantly, histone deacetylase 
inhibition cannot erase network plasticity–induced, apoptosis-inducing 
JNK–impaired, vincristine- or anisomycin-resistant neuroblastoma 
cells. However, histone deacetylase inhibition improves drug response 
by restoring drug-induced, apoptosis-promoting JNK activity within the 
drug-resistant subpopulation of neuroblastoma cells [8,24,25,57].

The recent drug design strategy of chemically induced proximity 
mimics Hebbian-learning of signaling networks in the sense that it 
strengthens the interaction between two signaling network neighbors. 
This strategy has recently been suggested to link the epidrugs histone 
lysine acetyltransferase (KAT) inhibitors to androgen or estrogen re
ceptor antagonists [96,97].

Therapy options (such as those mentioned before against the drug- 
resistant subpopulation of cancer cells) may induce cellular forgetting 
that breaks the (stochastically pre-existent or developing) habituation 
against the anticancer drug [19,23,26,27]. Desensitization of the 
’always-on’ cancer-specific signaling pathway induces cellular forget
ting. The rich repertoire of emerging drug development directions to 
break ErbB signaling by disrupting protein-protein interactions of the 
ErbB receptor or by proteolysis/lysosome-targeting chimeras of ErbB 
[98] provides important examples of targeted cellular forgetting. 
Drug-induced desensitization of the cancer-promoting alternative 
growth signal is another mode to modify cellular memory (such as that 
by inhibitors of Transient receptor potential melastatin type-8, TRPM8, 
which desensitize the alternative WNT/β-catenin pathway [99]). 
Breaking of sensitization against the unwanted side effects of the anti
cancer drug may be an important co-therapy option (e.g. the coadmin
istration of the flavonoid luteolin, with the aromatase inhibitor 
letrozole, besides the standard care of coadministered vitamin D and 
calcium, normalized the otherwise impaired blood lipid profile [100]).
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7. Concluding remarks and future perspectives

We reviewed the development of cancer drug resistance as a cellular 
learning process of signaling networks. In this process, the signaling 
network plasticity (due to stochastic fluctuations) of the heterogeneous 
cancer cells first develops a rare (one in ~3000) subpopulation of pre- 
existent drug-resistant cells. In the presence of anticancer drugs, can
cer cells forget their original state by downregulating drug-affected 
signaling proteins, by decreasing drug-affected connection strengths of 
signaling partners and by desensitizing drug-affected signaling path
ways. Cancer cells also relearn to strengthen (i.e. upregulate, increase 
connection strengths and sensitize) alternative pathways. This latter is 
analogous to the Hebbian learning process of inter-neuronal connec
tions. In the presence of the drug, the pre-existent resistant cell popu
lation becomes dominant (also because non-resistant cells die out) and 
develops drug resistance memory. We showed that all key players of the 
cellular learning process (such as IDPs, protein translocation, micro
RNAs/lncRNAs, scaffolding proteins and epigenetic/chromatin mem
ory) are documented to be involved in drug resistance development. 
Importantly, all of them are involved in epithelial-mesenchymal tran
sition, which accompanies drug resistance and leads to metastasis for
mation. We listed methods related to network structure or dynamics that 
assess drug resistance. We summarized the involvement of network 
pharmacology in opening new directions to understand resistance 
development. Finally, we highlighted cellular memory drugs affecting 
cellular memory and cellular forgetting and showed that these cellular 
memory drugs a.) erase the rare pre-existent drug-resistant cells as a pre- 

treatment before targeted anticancer therapy; b.) mimic Hebbian 
learning of signaling networks by chemically induced proximity; c.) 
affect chromatin memory by DNA and/or histone modifications; d.) 
desensitize the original or alternative cancer promoting signaling; e.) 
break sensitization to unwanted side effects.

Future studies are needed for the further exploration and validation 
of therapeutic strategies related to network pharmacology, cellular 
learning and cellular forgetting. Network pharmacology-related in
quiries may examine whether the onion structure of networks [74] be
comes more prevalent in signaling networks of drug-resistant cells than 
in drug sensitive cells. Similarly, the enrichment of core/periphery 
network structures with distinct peripheral network modules weakly 
attached to the network core but not to other peripheral node groups 
[75] during cancer drug resistance development needs to be explored. 
Importantly, changes of neither network controllability [76] nor 
network resilience [77] were studied in drug-resistant cells in enough 
detail yet. Similarly, little attention was focused on network neighbors 
[12,36,37] of proteins known to be involved in drug resistance devel
opment. All these may drive the attention to novel potential drug tar
gets, which may be successfully explored in combating cancer drug 
resistance.

Therapeutic modalities utilizing the plasticity of cancer cell networks 
require a much larger effort to bring their full potential to clinical 
practice. The appropriate scheduling of ’drug holidays’ [64,65,90]
including their onset, duration, sequence, reoccurrence, etc. deserves 
much greater attention. Combination of intermittent and maintenance 
therapies to conventional therapies is also an area getting less attention 

Fig. 4. Cellular memory drugs against drug resistance. Cellular memory drugs are drugs affecting the formation of cellular memory (such as the development and 
stabilization of alternative signaling pathways maintaining cancer cell viability) or the induction of cellular forgetting (such as desensitization of pathways to drug 
inhibition). a.) Drugs against network plasticity–induced, pre-existent drug-resistant cells that emerge as a rare subpopulation in cancer cell heterogeneity before the 
anticancer drug administration (e.g. IGF1R or PI3K inhibitors). b.) Epidrugs, i.e. inhibitors of epigenetic modifying enzymes, e.g. DNA-methyltransferases (DNMT), 
histone deacetylases (HDAC), histone methyltransferases or histone demethylases (both abbreviated as HMT). Ac = acetyl group. Me = methyl group. c.) Chemically 
induced proximity: mimicking Hebbian learning of signaling neighbors, e.g. linking histone lysine acetyltransferase (KAT) inhibitors to androgen or estrogen receptor 
(AR and ER, respectively) antagonists. d.) Drug-induced desensitization of the original or alternative cancer promoting growth signal (e.g. inhibition of ErbB or 
TRPM8 desensitizing the WNT/β-catenin pathway). e.) Breaking sensitization to the unwanted side effects of anticancer drugs (e.g. the coadministration of luteolin 
broke the sensitization of blood lipid profile induced by letrozole). Created with Biorender.com.
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than required.
Cellular memory drugs (i.e. drugs affecting cellular learning and 

cellular forgetting) are only rarely examined and used in the clinical 
practice yet. Sequential therapy, administering first cellular memory 
drugs against pre-existing drug-resistant cells displaying a large network 
plasticity (e.g. IGF1-receptor inhibitors, PI3K inhibitors or epidrugs) 
followed by targeted therapy [8,24,25,57], needs more studies. Cellular 
memory drugs inducing chemically induced proximity [96,97] will 
certainly be an area expanding in the future. Targeted cellular forgetting 
of continuously active signaling pathways (such as that of the EGF re
ceptor [98]) or desensitizing drug-induced alternative pathways (like 
that of the WNT/β-catenin pathway [99]) will also have greater atten
tion in the future. These efforts will help to set the balance of drug 
administration strategies to kill enough cancer cells (Huang, 2020) but 
still limit the pressure for drug resistance development.

Translation of the therapeutic concepts into clinical practice has 
many challenges. As an example of these, Biswas et al. [22] examined 35 
gene regulatory networks possessing several types of memories and re
ported a significant variability of their responses to treatment sequences 
and durations. An important contribution is the recent study of 
Kukushkin et al. [95] reporting that the training of two non-neural, 
immortalized cell lines distributed across multiple sessions produced a 
stronger memory than the same amount of training applied in a single 
episode. This property (also called massed training) is highly conserved 
across the animal kingdom and is observed at both the behavioral and 
the synaptic level [95]. These findings suggest that actual effects of drug 
treatments may exhibit a strong history dependence—a concept 
remaining largely under-explored in clinical settings.

However, recent studies on large dynamic networks examined the 
sensitivity of KRAS-mutated molecular subgroups to PD-(L)1 immuno
therapy in 776 patients [101], performed in silico clinical trials sug
gesting patient stratification and selecting the best-responder patient 
cohort [102], conducted an N-of-1 in silico clinical trial designing a 
successful therapy for a relapsed glioblastoma patient [103] and pro
vided in silico drug combination screens in a short time revealing the best 
few from 66,348 drug combination/cell line pairs [86]. Creation and 
simulation of proteome-wide models is greatly helped by artificial in
telligence (AI) technology [104,105]. These advances increase the hope 
that even larger dynamic network models may bring us closer to clinical 
applications.

There are several limitations to this study. The network methods we 
listed in Table 1. and our conclusions are based mostly on information 
about signaling networks. However, there are quite a few studies 
examining protein-protein interaction networks, including those which 
extended these PPI networks with microRNAs and/or lncRNAs. Since 
signaling networks constitute a major subnetwork of the combined PPI/ 
microRNA/lncRNA network, and since molecular networks very often 
behave self-similarly [12], we expect that the results obtained with PPI 
networks or extended PPI networks are valid for signaling networks, too. 
As an example of this, the disease module concept of László-Albert Bar
abási was first shown in PPI networks, then extended to PPI/
mircoRNA/lncRNA networks and also proved to be valid in signaling 
networks [31,106]. However, the precise examination of the similarity 
between PPI and signaling networks, and the possibility of extending 
these conclusions to gene regulatory networks, gene interaction net
works or metabolic networks, are open questions for future studies.

Since we discussed learning of signaling networks, we concentrated 
on the development of acquired resistance. However, several points 
mentioned (such as network plasticity–induced cellular heterogeneity) 
cover intrinsic resistance as well. Except for the role of the tumor 
microenvironment in the development of cancer cell plasticity (Section 
4.2.), we concentrated on the learning of single-cell signaling networks. 
Learning and forgetting during the development of drug resistance by 
the cell-cell network of cancer, stromal and immune cells is an important 
area of future studies.

Our current knowledge on signaling network dynamics during drug 

resistance development is rather limited. This is mainly because of the 
limited size of the signaling networks examined in these studies. Recent 
developments extended human interactomes and signaling networks to 
the proteome level covering ~20 thousand human proteins [15,16,18]. 
However, even the largest currently published dynamic network models 
have only between 2 and 3.6 thousand nodes [86,101–103] (in the 
currently used version #8 of the Simulated Cell model, the network size 
grew to 8 thousand nodes; Daniel V. Veres, personal communication). 
What are the challenges to reach proteome-wide drug resistance 
models? Current datasets often use different identifiers, which prevents 
their easy combination. Only a segment of the data is experimentally 
verified, and a significant portion of them is only predicted. Both 
network data and models need to be more interoperable and repro
ducible [107]. Current, intensive community efforts [107–110] may 
solve these challenges in the future.

Finally, our conclusions give a valid description of the development 
of drug resistance in cancer cells. However, we note that there are 
several similarities to antibiotic resistance, antimicrobial resistance and 
resistance in diseases other than cancer. As examples of these, the con
cepts of the resistome and compensation of alternative signaling path
ways were also coined in antibiotic resistance development [32,111], 
and even plants involve their chromatin memory in their defense re
sponses [112]. Recently, an excellent review was published about the 
similarities of drug resistance development in bacteria, fungi and cancer 
cells [113]. However, the examination of the extent of this similarity 
will require further studies.

Our rapidly increasing knowledge about molecular networks of 
cancer cells has already provided a very powerful armament to combat 
the development of drug resistance. Significant improvements of the last 
years in network dynamics measurements opened an especially impor
tant new area here. We hope that our study summarizing the concept of 
cellular learning and cellular forgetting in understanding drug resistance 
development at the network level will prompt further studies of this 
exciting field.
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Kerestély Márk: Writing – review & editing. Keresztes Dávid: Writing 
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computational modeling of biological systems and the significance of the SysMod 
community, Bioinform. Adv. 4 (2024) vbae090, https://doi.org/10.1093/bioadv/ 
vbae090.

[111] L. Ali, M.H. Abdel Aziz, Crosstalk involving two-component systems in 
Staphylococcus aureus signaling networks, J. Bacteriol. 206 (2024) e0041823, 
https://doi.org/10.1128/jb.00418-23.

[112] S.W. Noh, R.R. Seo, H.J. Park, H.W. Jung, Two Arabidopsis homologs of human 
lysine-specific demethylase function in epigenetic regulation of plant defense 
responses, Front. Plant Sci. 12 (2021) 688003, https://doi.org/10.3389/ 
fpls.2021.688003.

[113] I. El Meouche, P. Jain, M.K. Jolly, J.P. Capp, Drug tolerance and persistence in 
bacteria, fungi and cancer cells: role of non-genetic heterogeneity, Transl. Oncol. 
49 (2024) 102069, https://doi.org/10.1016/j.tranon.2024.102069.

[114] H. Ye, M. Sun, S. Huang, F. Xu, J. Wang, H. Liu, L. Zhang, W. Luo, W. Guo, Z. Wu, 
J. Zhu, H. Li, Gene network analysis of hepatocellular carcinoma identifies 
modules associated with disease progression, survival, and chemo drug 
resistance, Int. J. Gen. Med. 14 (2021) 9333–9347, https://doi.org/10.2147/ 
IJGM.S336729.

[115] Y.E. Huang, S. Zhou, H. Liu, X. Zhou, M. Yuan, F. Hou, S. Chen, J. Chen, L. Wang, 
W. Jiang, DRdriver: identifying drug resistance driver genes using individual- 
specific gene regulatory network, Brief. Bioinform. 24 (2023) bbad066, https:// 
doi.org/10.1093/bib/bbad066.

[116] J. Zhang, W. Zhu, Q. Wang, J. Gu, L.F. Huang, X. Sun, Differential regulatory 
network-based quantification and prioritization of key genes underlying cancer 
drug resistance based on time-course RNA-seq data, PLoS Comput. Biol. 15 (2019) 
e1007435, https://doi.org/10.1371/journal.pcbi.1007435.

[117] G. Lebedeva, A. Sorokin, D. Faratian, P. Mullen, A. Goltsov, S.P. Langdon, D. 
J. Harrison, I. Goryanin, Model-based global sensitivity analysis as applied to 
identification of anti-cancer drug targets and biomarkers of drug resistance in the 
ErbB2/3 network, Eur. J. Pharm. Sci. 46 (2012) 244–258, https://doi.org/ 
10.1016/j.ejps.2011.10.026.

Glossary

Anti-Hebbian learning: decrease of those connection strengths (network edge weights) 
which participated in the transmission of a stimulus that was repeated too often, or 
became too large or continuous. Anti-Hebbian learning is also a form of cellular 
forgetting.

Cellular forgetting: occurs continuously as a result of cellular noise. However, cells can 
also induce forgetting of special signaling pathways, which became too frequently 
used by too often repeated or continuous signals. This often happens by desensitiza
tion or pathway reconfiguration.

Cellular learning: adaptation of single, non-neuronal cell networks to produce a faster, 
stronger and more stable response to external stimuli repeated a few times. Often 
involves increasing strength of those network interactions which participated in the 
signal transmission after the repeated stimulus.

Cellular memory: persistent changes in molecular networks (especially signaling net
works) of individual cells after a repeated stimulus.

Cellular memory drugs: drugs or drug combinations based on cellular memory formation 
or cellular forgetting mechanisms.

Chromatin memory: altered 3D chromatin structure providing different accessibility of 
genes for transcription after a repeated signal. Histone and DNA modifications play 
key roles in chromatin memory development.

Epigenetic memory: chromatin memory induced by a previous signal, which is heritable 
through cell generations.

Epidrugs: inhibitors of the epigenetic modifying proteins DNA methyltransferase, histone 
deacetylase, histone methyltransferase and histone methylase inducing epigenetic 
inheritance.

Epithelial-mesenchymal transition (EMT): a process where epithelial cells lose their cell 
polarity and cell-cell adhesion and gain migratory and invasive properties to become 
mesenchymal cells. EMT induces cancer metastases and may lead to cancer stem cell 
formation.

Hebbian learning: increase of those connection strengths (network edge weights) which 
participated in the transmission of a repeated stimulus.

Network module: a group of network nodes having a denser connection structure than 
their connection density with nodes in adjacent modules.

Network pharmacology: a novel area of drug design using molecular networks to suggest 
treatments, such as appropriate drug combinations.

Network plasticity: ability of fast network reconfigurations in response to external stimuli. 
Network plasticity is achieved, e.g. by network noise, conformational plasticity of 
IDPs and fast reconfiguration of feedback loops.

Network robustness: ability to maintain key cellular functions through cellular learning 
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and through tolerance of fluctuations in protein-protein interactions and cellular noise 
of stochastic molecular processes. Becomes enhanced by feedback controls, redun
dancy (i.e. functionally equivalent network parts) and by network modularity.

Scaffolding proteins: proteins, which connect adjacent signaling components, and thus 
make their interaction stronger, faster and more robust against cellular noise.
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