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Drug resistance is responsible for >90% of cancer related deaths. Cancer drug resis-

tance is a system level network phenomenon covering the entire cell. Small-scale

interactomes and signalling network models of drug resistance guide directed drug

development. Recently, proteome-wide human interactome and signalling network

data have become available, which have been extended by drug–target interactions,

drug resistance-inducing mutations, as well as by several cancer and drug resistance-

related multi-omics datasets. System level signalling network models have become

available examining therapy resistance, performing in silico clinical trials, and con-

ducting large, in silico drug combination screens. Drug resistance network data and

models have become interoperable and reliable. These advances paved the road for

building proteome-wide drug resistance models.
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1 | ANALYSIS OF CANCER DRUG
RESISTANCE MECHANISMS REQUIRES
NETWORK MODELS

Four new cases and one death from cancer occurred every minute of

2024 in the United States alone (https://cancerstatisticscenter.cancer.

org/module/BmVYeqHT/). More than 90% of cancer-related deaths

are associated with cancer drug resistance (Huang et al., 2023). Drug-

resistant cancer cells develop dozens of evasion mechanisms including

(1) changes in drug uptake/efflux (Marin et al., 2024); (2) mutations in

drug targets (Hu et al., 2021; Milacic et al., 2024; Nussinov

et al., 2021); (3) alternative signalling pathways (Cao et al., 2024; Guo

et al., 2025; Hu et al., 2021; Li et al., 2020; Nussinov et al., 2020;

Nussinov et al., 2021); (4) alternative metabolic pathways (Hashimoto

et al., 2022; Robinson et al., 2020); (5) genomic instability (Fessler

et al., 2024; Hu et al., 2021); (6) changed chromatin structure (Cao

et al., 2024; Guo et al., 2025; Zhao et al., 2020) and (7) increased cel-

lular plasticity leading to cancer stem cell formation and tumour het-

erogeneity (Firdous et al., 2022; Golkowski et al., 2023; Hashimoto

et al., 2022). Numerous scientific efforts analyse these escape routes

as independent entities. However, cellular signalling and changes in

chromatin structure regulate all other processes; genomic instability

causes drug-resistant mutations; mutations affect cellular signalling

and metabolism, etc. (Bueschbell et al., 2022; Fessler et al., 2024;

Golkowski et al., 2023; Hashimoto et al., 2022; Nussinov et al., 2024;

Reviejo et al., 2021; Robinson et al., 2020). Thus, cancer drug resis-

tance mechanisms form a proteome-wide molecular network covering

the entire cancer cell and need network models to understand their

complexity (Figure 1).

Abbreviations: CBM, Cellworks Computational Omics Biology Model; PARP, poly-(ADP-

ribose)-polymerase; PPI, protein–protein interaction.
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Small-scale protein–protein interaction (PPI) and signalling

network models give a first approximation of cancer drug resistance

mechanisms. In agreement with prevailing studies, small-scale

models focus on specific areas (such as DNA repair, the epithelial-

mesenchymal transition or effects of drug-resistance-inducing muta-

tions) and suggest successful drug combinations and personalized

therapies (Ayala-Zambrano et al., 2023; Gómez Tejeda Zañudo

et al., 2021; Gupta, Silveira, Lorenzoni, et al., 2024; Gupta, Silveira,

Piedade, et al., 2024; Jiang et al., 2024; Latini et al., 2024; Mendik

et al., 2022; Montagud et al., 2022; Wooten et al., 2021). However,

a thorough analysis requires much larger network models. Recently,

important preconditions of large-scale (system level) network models

were fulfilled. First, both PPI networks (interactomes) and signalling

networks grew to cover the entire human proteome (Csabai

et al., 2022; Oughtred et al., 2021; Szklarczyk et al., 2025). Second,

these networks were extended by drug–target interactions, drug

resistance-inducing mutations, as well as by several cancer and

drug resistance-related multi-omics datasets (Hu et al., 2021; Li

et al., 2020; Oughtred et al., 2021; Du et al., 2021; Knox

et al., 2024; Panneerselvam et al., 2024; Jiang et al., 2025). Third,

network analysis methods were established to identify central net-

work nodes that can control a desired set of proteins involved in

drug resistance development, to determine network groups (network

modules) enriched in proteins involved in drug resistance develop-

ment, as well as to compare drug-sensitive and drug-resistant net-

works (Bueschbell et al., 2022; Siminea et al., 2024). These advances

paved the way for building drug resistance models of whole cancer

cells. System level signalling network models including several thou-

sands of participating proteins and RNAs have examined the sensi-

tivity of 776 KRAS-mutated tumours for PD-(L)1 immunotherapy

(Padda et al., 2021), performed in silico clinical trials (Castro

et al., 2021; Castro et al., 2022), and conducted large in silico drug

combination screens (Papp et al., 2024). Even larger, proteome-wide

drug resistance network models require standardized data organiza-

tion and model structure. Proper benchmarks ensuring model reli-

ability are also needed. We summarize the results of the intensive

community effort to establish these requirements (Dai et al., 2021;

De Jonghe et al., 2024; Diamant et al., 2025; Eckhart et al., 2024;

F IGURE 1 Cancer drug resistance: a network phenomenon. The figure illustrates how evasion mechanisms of drug-resistant cancer cells
mobilize the entire cellular machinery. (a) Decreased drug uptake and increased drug efflux. (b) Mutations in drug targets making them drug-
resistant. (c) Alternative signalling pathways (e.g., redundant, parallel and compensatory pathways). (d) Altered cellular metabolism (e.g., increased
glucose consumption, glycolysis, lipogenesis, cholesterol biosynthesis/mevalonate pathway, glutamine addiction, increased autophagy and
pinocytosis). (e) Increased genomic instability (e.g., increased mutation rate, chromosomal rearrangements and decreased DNA-repair). (f)
Changed chromatin structure (e.g., decreased DNA-methylation at CpG dinucleotides, increased DNA methylation of promoter regions of
anticancer —e.g., apoptotic— proteins, dominantly histone hypermethylation and deacetylation, lnc-RNA rearrangements and altered long-range
chromatin contacts). (g) Increased cellular plasticity leading to cancer stem cell formation and increased tumour heterogeneity. All these
mechanisms are interlinked, and form a network covering the entire cancer cell. Created with Biorender.com.
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Feng et al., 2024; Jia et al., 2023; Niarakis et al., 2022;

Panneerselvam et al., 2024; Piochi et al., 2023; Puniya et al., 2024;

Szalai et al., 2023; Tatka et al., 2023; Touré et al., 2020; Wang

et al., 2024). This rapid progress and the recent applications of artifi-

cial intelligence (AI) methods in building system level molecular

models (Bunne et al., 2025; Rood et al., 2024; Valous et al., 2024)

make it a sensible expectation that in the very near future

proteome-wide network models of cancer drug resistance will be

available.

2 | SMALL-SCALE CANCER NETWORK
MODELS GUIDE DIRECTED DRUG
DEVELOPMENT

Small-scale network models provide the first approximation of the

networking events of cancer drug resistance. Protein–protein inter-

action (PPI) network models identify cancer network modules and

offer clues to drug targeting and drug combinations (Cheng

et al., 2021; Gysi & Barabási, 2023; Huang et al., 2023; Nogales

et al., 2022). Small-scale signalling networks bring us one step closer

to efficient drug resistance models. Signalling networks centred

around DNA repair, epithelial-mesenchymal transition or genetic

changes inducing cancer drug resistance (Table 1), give insight into

drug-resistant metastasis formation and the design of personalized

therapies.

2.1 | Interactomes reveal proteins and RNAs
participating in drug resistance development

PPI networks contain disease-modules, that is, network modules asso-

ciated with a certain disease, such as cancer (Gysi & Barabási, 2023;

Nogales et al., 2022). The recent work of Gysi and Barabási (2023)

extended the human interactome by noncoding RNAs. Their work

showed that the extended PPI network contains a high number of

cancer modules associated with various types of cancer including mel-

anoma, glioma, neuroblastoma and endometrioid carcinoma. Complex

tumours may contain more than 10 such cancer modules (Nogales

et al., 2022). Proteins of cancer modules may reveal novel drug targets

and drug combinations (Gysi & Barabási, 2023; Nogales et al., 2022).

Not only network modules (i.e., groups of neighbouring network

nodes), but already connected network node-pairs (PPIs) may be

highly informative on cancer progression mechanisms. Analysis of

10,861 tumour exomes established 470 putative onco-PPIs changed

by oncogenic mutations. The study validated 13 among them includ-

ing the interactions between ALOX5 and MAD1L1, HOMEZ and

EBF1, as well as RHOA and ARHGDIA. The 470 oncoPPIs were highly

correlated with patient survival and drug resistance (Cheng

et al., 2021). Recently, 11 cancer-specific small-scale PPI networks

were developed (where each contained �150 proteins) and were used

to assess 61,754 potential anti-cancer drug combinations by the prox-

imity of drug targets and clustering (Table 1; Jiang et al., 2024). While

larger interactomes increase the chances of unexpected discoveries,

TABLE 1 Small-scale network models of cancer drug resistance.

Name or
type Network (number of nodes)

Cancer
type Brief description References

PPI 11 cancer-specific small-scale

interactomes (e.g., 136, 147)

Various Assessment of 61,754 potential drug

combinations by the proximity of drug targets and

clustering

Jiang et al. (2024)

Boolean Small-scale signalling
networks: DNA double strand

break repair (22)

Various Assessment of drug resistance-inducing non-

canonical repair

Ayala-Zambrano et al. (2023)

Boolean Epithelial-mesenchymal

transition (31 and 43)

Various Assessment of BM1, MALAT1, miR-145-5p and

PTEN1/miR-21/PTEN in drug-resistant cells

Gupta, Silveira, Lorenzoni, et al.

(2024); Gupta, Silveira, Piedade,

et al. (2024)

Boolean

+ protein

translocation

Epithelial-mesenchymal

transition (70 reduced to 19)

Various Shows different functions before and after

protein translocation

Mendik et al. (2022)

Boolean FLT3 tyrosine kinase internal

tandem duplication network

(76)

Acute

myeloid

leukaemia

Personalized predictive models of the signalling

landscape of drug-resistant patients

Latini et al. (2024)

Boolean (ER+) PI3KCA mutant drug-

resistant cells (101)

Breast

cancer

Modelling combinations of the PI3Kα inhibitor,

alpelisib with BH3 mimetics

Gómez Tejeda Zañudo et al.

(2021)

Boolean Prostate cancer personalized

to 488 patients (133)

Prostate

cancer

Personalized modelling of drug combinations Montagud et al. (2022)

Boolean FLT3-mutant drug-resistant

cells (186)

Acute

myeloid

leukaemia

Probabilistic Bayesian model of acquired

resistance of six drug treatments including

quizartinib and dexamethasone

PPI, protein–protein interaction.

Wooten et al. (2021)
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cancer modules, onco-PPIs and specifically designed small-scale PPI

networks may accelerate concept-directed drug development.

A potentially very important PPI network model is the resistome,

which contains interactions of several hundred proteins involved in

drug resistance (Marin et al., 2024; Reviejo et al., 2021). Key segments

of the human resistome are centered around the transportome of the

solute carrier superfamily (SLC) proteins and around multidrug-resis-

tance (MDR) proteins mediating drug uptake and efflux, respectively

(Marin et al., 2024; Reviejo et al., 2021). Time dependent single-cell

RNA-sequencing (sncRNA-seq) data of cancer cells developing drug

resistance (e.g., against tamoxifen-treatment; Iida & Okada 2024)

revealed several hundred genes exhibiting multistable expression

states in drug-sensitive and -resistant cell subpopulations. The PPI

network of these genes was associated with cell survival and

metastasis-related pathways (Iida & Okada 2024). We also have

extensive data on the changes of the antibiotic resistance related PPI

network of the gut microbiome of non-small cell lung cancer patients

treated with the immune checkpoint inhibitors nivolumab,

pembrolizumab or atezolizumab (Iwan et al., 2024) or that of pancre-

atic cancer patients (Liu et al., 2024). Despite of these efforts, dedi-

cated network data of the human cancer resistome have not been

assembled yet.

2.2 | Small-scale signalling network models of
cancer drug resistance

Signalling networks contain directed connections, which encode an

even higher level of information than the undirected interactions of

interactomes. Directionality can be obtained from literature evidence

or by experiments using targeted perturbations and measuring time-

series data (Peidli et al., 2024). Time series analysis of protein kinases

helped to elucidate the drug resistance mechanisms of colorectal

cancer cells (Rosenberger et al., 2024) and suggested the adapter-

associated kinase (AAK1) complex as responsible for the epithelial-

mesenchymal plasticity and drug resistance (Golkowski et al., 2023;

Katebi et al., 2021). However, directed interactions make the analysis

of signalling networks longer and more difficult. Therefore, signalling

networks are often optimized to be large enough to capture regula-

tory details (e.g., more than �30 nodes total), but not too large for

easy simulation (e.g., fewer than �200 nodes). In Boolean networks, a

regulatory function with N inputs has 2N possible input conditions

which restricts the number of input nodes to around seven (Wooten

et al., 2021). Such considerations set the number of nodes of currently

available cancer drug resistance-related Boolean networks between

22 and 186 (Table 1). Small-scale signalling network analysis recov-

ered the drug-resistant behaviour of the BRCA1/FANCS mutant

(Ayala-Zambrano et al., 2023), PTEN (Gupta, Silveira, Piedade,

et al., 2024) and GSK3B (Wooten et al., 2021), as well as identifying

the TIP60 complex (Ayala-Zambrano et al., 2023), miR-145 (Gupta,

Silveira, Lorenzoni, et al., 2024), the JNK kinase pathway (Latini

et al., 2024), FOXO3 (Gómez Tejeda Zañudo et al., 2021) and a

compartment-specific role of GSK3B/GLI (Mendik et al., 2022)—as all

potentially playing roles in cancer drug resistance. Small-scale signal-

ling networks also helped the design of combination therapies (Gómez

Tejeda Zañudo et al., 2021; Montagud et al., 2022) and personalized

therapies (Latini et al., 2024; Montagud et al., 2022) in cancer drug

resistance.

3 | SYSTEM LEVEL NETWORK DATA
ORGANIZE OUR KNOWLEDGE OF CANCER
AND DRUG RESISTANCE

Small-scale network models are not able to cover the richness of drug

resistance evasion mechanisms mobilizing the entire cancer cell. For

the construction of system level network models proteome-wide net-

work data are required. Table 2 shows a comprehensive summary of

the system level network databases developed in the last few years.

The first two large human protein–protein interaction (PPI) net-

works (interactomes) already contained 53 (Luck et al., 2020) and

118 thousand interactions (Huttlin et al., 2021), respectively. These

were followed by updates of the extensive PPI databases BioGRID

(Oughtred et al., 2021), STRING (Szklarczyk et al., 2025) and that of

the IMEx consortium, containing four previous databases

(Panneerselvam et al., 2024). Already, the BioPlex dataset included

88% of cancer-related genes (Huttlin et al., 2021). All these databases

contain a broad description of the function of each protein included

including their role in cancer and drug resistance. BioGRID has a spe-

cial glioblastoma-specific subnetwork of 53,689 interactions (https://

thebiogrid.org/project/5/glioblastoma.html; Oughtred et al., 2021).

The number of interactions of the human PPI network was doubled

by the addition of noncoding RNAs (Gysi & Barabási, 2023). More

specific interactomes of human tissues (Ziv et al., 2022), cancer

drivers (Du et al., 2021) and cancer stem cells (Firdous et al., 2022)

were also developed.

System level signalling networks are exemplified by OmniPath,

SignaLink, SIGNOR and Reactome network databases (Csabai

et al., 2022; Lo Surdo et al., 2023; Milacic et al., 2024; Türei

et al., 2024). The 2025 version of the STRING interactome (Szklarczyk

et al., 2025) contains a ‘regulatory network’, which is, in fact, a signal-

ling network. Already the first high-confidence interactomes (Huttlin

et al., 2021; Luck et al., 2020) covered more than one third of the

human proteome, which grew close to two thirds (Milacic et al., 2024;

Türei et al., 2024), have reached full coverage in recent PPI and signal-

ling datasets (Oughtred et al., 2021; Csabai et al., 2022; Szklarczyk

et al., 2025; https://string-db.org/overview/overview.9606.html). The

coverage of drug resistance-related processes of signalling networks

is extended further by the addition of noncoding RNA–RNA and

RNA–target interactions (Cui et al., 2025; Guo et al., 2025; Zhao

et al., 2020) and by the addition of drug resistance-related noncoding

RNAs (Cao et al., 2024). The inclusion of drug�target interactions

(Knox et al., 2024; Li et al., 2020) gave another crucially important link

of signalling networks to anti-cancer drug design. Drug resistance

rewires human signalling (Nussinov et al., 2020; Nussinov

et al., 2024). In KinaseMD, 252,000 such signalling pathway rewiring

4 KEREST�ELY ET AL.
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protein kinase mutations were catalogued, and the level of their

potential drug resistance was calculated (Hu et al., 2021).

The great potential of signalling networks to describe cancer drug

resistance can be further expanded by the integration of multi-omics

data. Recent advances doubled omics datasets every 6 months for the

past several years (Bunne et al., 2025) and provided close to a

hundred cancer-related omics datasets (including DepMap and LINCS

among many others) (Bueschbell et al., 2022; Huang et al., 2023; Jiang

et al., 2025; Siminea et al., 2024; Yue & Dutta, 2022). Proteome-wide

PPI and signalling networks together with their extensions of noncod-

ing RNAs, drug targets and drug resistance-related multi-omics data

organize our current knowledge on cancer and drug resistance and

TABLE 2 Large-scale network databases helping cancer drug resistance therapy.

Database

name Type and system level of network data Relation to cancer drug resistance

Latest

update References

IMEx Protein–protein interaction (PPI) network database

consortium containing IntAct, MINT, MatrixDB and

DIP databases (D; 1.5)a

Over a thousand IntAct interactions related to

human drug resistance; cancer- and mutation-

related specific IntAct datasets

2024 Panneerselvam

et al. (2024)

STRING PPI including only physical or complex functional

associations (D; >20,000)

Human experimental data, gene ontology (GO)

terms and regulation pathways are available

2025 Szklarczyk et al.

(2025)

BioGRID PPI built on biomedical literature (D; 1.9) Integrated chemical target, biomolecular

interaction and resistant phenotype data for drug

discovery

2024 Oughtred et al.

(2021)

NCI PPI including noncoding RNA interactions (H; D;

1.1)

Disease modules, including various types of

cancer

2023 Gysi and

Barabási (2023)

TissueNet PPI specific for 125 adult and 7 embryonic tissues

(H; D; 0.5)

GO terms are available 2022 Ziv et al. (2022)

BioPlex High-confidence proteome-wide human PPI (H; D;

0.118)

88% of cancer-related genes and expression data

of 378 cancer cell lines

2021 Huttlin et al.

(2021)

HuRI High-confidence proteome-wide human PPI (H; D;

0.053)

Cancer-related subnet is available 2020 Luck et al.

(2020)

PINA PPI of 33 cancer types (H; D; 0.4) Cancer drivers, therapeutic targets, biomarkers are

available

2021 Du et al. (2021)

BCSCdb PPI of 171 cancer stem cell biomarkers of 10 cancer

types (H; D)

Cancer stem cells are primary causes of drug

resistance

2022 Firdous et al.

(2022)

Reactome Signalling network (SigNet) of intracellular

pathways (H; D; 0.015)

1544 disease-specific reactions, effects of 1119

drugs, mutation-effects

2024 Milacic et al.

(2024)

SIGNOR SigNet including chemicals, stimuli, phenotypes

besides proteins (H; D; 0.033)

Cancer-related proteins are over-represented 2024 Lo Surdo et al.

(2023)

SignaLink SigNet including microRNAs (D; 0.752) Was used for cancer research and drug discovery 2022 Csabai et al.

(2022)

OmniPath SigNet from >100 datasets including intercellular

communication (D; 0.015)

Cancer drivers, cancer pathway associations 2021 Türei et al.

(2024)

KinaseMD SigNet rewiring by protein kinase mutations (H; D;

0.252)

Level of potential cancer drug resistance is

calculated

2021 Hu et al. (2021)

LncCancer lncRNA-circularRNA interactions (H; D; 0.001) 9254 lncRNA/cancer associations, drug resistance

data included

2022 Guo et al.

(2025)

miRTArBase microRNA-target interactions (H; D; 2.2) microRNA-s a frequently involved in drug

resistance

2025 Cui et al.

(2025)

LncTarD lncRNA-target interactions (H; D; 0.006) Drug resistance-related lncRNA-target

interactions

2020 Zhao et al.

(2020)

NoncoRNA Noncoding RNA-drug target interactions (H; D;

0.008)

Drug resistance-related microRNA- and lncRNA-

target interactions

2020 Li et al. (2020)

ncRNADrug Drug resistance associated noncoding RNAs (H; D;

0.009)

Drug resistance-related noncoding RNAs 2024 Cao et al.

(2024)

Human1 Metabolic network genome-scale model of human

metabolism (H; D; 0.013)

33 cancer metabolic models showing changes of

drug-resistant phenotypes

2023 Robinson et al.

(2020)

a(H; D; number) H; D and the number in parentheses refer to databases dedicated only to human data (H) download options (D) and the number of

interactions covered in millions, respectively. PPI, protein–protein interaction.
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offer a framework for the ongoing efforts to develop system level

models of cancer drug resistance.

4 | STRUCTURAL ANALYSIS OF LARGE
NETWORKS UNCOVERS DRUG RESISTANCE
MECHANISMS

Small-scale networks have the advantage that their visualization

already gives an insight to identify central, potentially actionable pro-

teins. However, visualization of system level interactomes and signal-

ling networks often results in a hedgehog image, where central

network nodes cannot be readily identified (Siminea et al., 2024).

However, the mathematical analysis of the proteome-wide network

connection structure is able to distinguish central network nodes

encoding potential drug targets or biomarkers (Bueschbell et al., 2022;

Siminea et al., 2024). The review of Siminea et al. (2024) gives a state-

of-the-art list of freely accessible softwares for network structure

analysis. NetControl4BioMed is a recently developed web-tool to dis-

cover an important type of central network node, that is, source

nodes of signalling networks that can control a desired set of targets

including proteins involved in drug resistance development. Such con-

trolling source nodes are candidates of potential drug targets. The

pre-built dataset of the tool already includes 52 sets of cancer-specific

survival genes from COLT, 1526 sets of cancer-mutated genes from

DepMap and drug–target interactions from DrugBank. However,

users may also upload their own drug-resistance-specific networks for

analysis (Popescu et al., 2021).

Besides finding central network nodes, another important task of

network structure analysis is to compare networks (e.g., those

of drug-sensitive and -resistant cells). To help this, a network correla-

tion analysis methodology was developed to show the similarities and

differences in network structures between cancer types, stages of the

epithelial-mesenchymal transition and drug resistance development

(Bueschbell et al., 2022). Extraction of common network structures

identified gefitinib- and erlotinib-resistance mechanisms of EGFR-

independent cells (Park et al., 2022). PANDA is an integrative tool for

network comparison, which incorporates a PPI network, transcription

factor binding motifs and single-cell RNA-seq data. PANDA can be

used to compare drug-sensitive and drug-resistant cell lines. The

method identifies drug resistance pathways and evaluates alternative

drugs that could potentially overcome drug resistance (The

et al., 2023).

Recent studies extended the structural analysis of PPI and signal-

ling networks to networks containing noncoding RNAs. The mRNA-

microRNA-lncRNA network analysis method, ncDRMarker, identified

noncoding RNA network signatures of drug resistance (Yang

et al., 2020). The comprehensive characterization of a drug resistance-

related mRNA-microRNA-lncRNA network of 15 anti-cancer drug cat-

egories distinguished clinically actionable genes associated with

patient survival and cancer stage (Liu et al., 2021). These examples

show that structural analysis of large networks is able to point out key

aspects of drug resistance mechanisms.

5 | SYSTEM LEVEL MODELS OF CANCER
DRUG RESISTANCE

The richness of network databases and tools for the analysis of large

network structures enable the construction of system level drug resis-

tance models. System level modelling (often mentioned also as system

level simulation) is a well-known methodology to model complex

cyber-physical systems as distant as space flights or self-driving cars.

Recently, cancer drug resistance dynamic signalling network models

reached the system level.

5.1 | System level modelling

System level modelling (also called system level simulation) is a widely

applied methodology of industrial automation modelling the global

behaviour of large cyber-physical systems, for example, space-flights

or self-driving cars (Deubert et al., 2024). Main goals (“readouts”) of
(1) space-flights; (2) self-driving car development and (3) drug-

resistant cancer patient therapy are surprisingly similar: (1) completed

mission, survival and safe landing of astronauts; (2) completed jour-

ney, survival and safe arrival of passengers and (3) completed treat-

ment, survival and safe recovery of patients (Deubert et al., 2024;

Tatka et al., 2023). Not surprisingly, NASA, NIH, the FDA and

European Medicines Agency (EMA) developed similar standards to

assess the credibility of computational models and simulations (Tatka

et al., 2023).

System level modelling often has the curse of dimensionality lead-

ing to unacceptable computation times (Eckhart et al., 2024). Order

reduction (dimension reduction) of models by (1) modularization,

(2) developing domain-independent system architecture (which is

specified by domain-specific elements), (3) building hierarchical struc-

tures helps both the overview of the system level model and the dis-

covery of design-flaws. Order reduction significantly shortens

simulation run-time. Partitioning to subsystems also allows parallel

computing. However, subsystems need careful design of their cou-

pling and synchronization at the system level (Deubert et al., 2024;

Tatka et al., 2023). From 2021 foundation models were introduced,

where AI is trained on extensive datasets, and fine-tuned to specific

applications by transfer learning (Bommassani et al., 2024). From

2022 exascale supercomputers (computing 1018 floating point opera-

tions per second) became available, which will significantly accelerate

the discovery process in cancer drug resistance. However, exascale

computers require a re-design of today's simulation algorithms (Chang

et al., 2023).

5.2 | System level models of cancer drug
resistance

In the last few years, several methodologies have been developed to

provide a dynamic system level network model of healthy and

cancer cells (Table 3). The Computational Biological Modelling
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approach includes 3300 genes and >85,000 functional interactions

(i.e., signalling, metabolic, epigenetic and transcriptional regulatory

pathways) of cancer, and uses ordinary differential equations as a

kinetic model. Computational Biological Modelling was used to model

KRAS-mutated non-small cell lung cancer sensitivity to PD-(L)1 immu-

notherapy (Padda et al., 2021).

TABLE 3 System level network models of cancer drug resistance.

Name or type Network (number of nodes) Cancer type Brief description References

Computational

biological

modelling

System level signalling network +

metabolic, epigenetic and

transcriptional pathways (3300)

Applied to

non-

small-cell

lung cancer

PD-(L)1 immunotherapy sensitivity of KRAS-mutated

molecular subgroups in 776 patients

Padda et al.

(2021)

Cellworks

computational

omics biological

model (CBM)

System level cancer signalling

network (3765)

Applied to

glioblastoma

Assessment of temozolomide, lomustine combination

therapy in patients with methylated-MGMT; successful

personalized therapy for a relapsed glioblastoma

patient

Castro et al.

(2021); Castro

et al. (2022)

Turbine simulated

cell

System level cancer signalling

network (1997 growing to 8000)

Various Difference equation-based simulation of signal

propagation in a system level human signalling network

to reveal bests of 66,348 drug combination–cell line
pairs

Szalay and

Csermely

(2020); Papp

et al. (2024)

F IGURE 2 Current status and future trends of cancer drug resistance system level models. The spectacular development of network data and
models has enabled the formation of system level cancer drug resistance models—where “system level” already means several thousand proteins,
and expected to mean proteome-wide soon—in several ways: (a) small-scale PPI and signalling networks guide directed search in system level

models; (b) system level human PPI, signalling and metabolic networks became available; (c) integrated and organized data structures were
developed; (d) Artificial Intelligence (AI)-driven network analysis and combination of multi-omics data has become possible; (e) models of drug
resistance-induced network rewiring have been established; (f) interoperable and reliable dynamic system level network models have been
developed. All of these recent advances make a rapid expansion of the field possible in the near future in the following areas: (a) multi-cellular
molecular network models are expected incorporating tissue structure, cell migration and tissue formation; (b) early and accurate prediction of
escape trajectories of drug resistant cells will be available; (c) system level in silico drug combinatorial screens will accelerate drug discovery and
clinical translation; (d) personalized N-of-1 in silico clinical trials will guide the therapy of drug resistant patients; (e) in silico clinical trials will
stratify best-responder patients to single drug or combinatorial treatments; (f) rapid advance in the system level models of cancer drug resistance
will help the discovery of new antibiotics and fungicides. Background image is designed by Freepik.
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The Cellworks Computational Omics Biology Model (CBM) con-

tains 3765 genes and 29,181 functional interactions of cancer signal-

ling, and uses Michaelis–Menten equation-based simulations until the

system reaches homeostasis. Somatic gene mutations and gene copy

number variations (CNVs) of individual patients are also built in to

this model. An important output of CBM is a composite score

representing cell numbers with cancer hallmark behaviours. CBM was

used to assess the response of 274 newly diagnosed patients with

methylated-MGMT glioblastoma for temozolomide or lomustine treat-

ments, or their combination showing strong, modest/intermediate,

negligible or harmful effects for patient subgroups (Castro et al., 2021).

The model was also used to design a successful personalized therapy

for a patient with relapsed glioblastoma (Castro et al., 2022).

The Turbine Simulated Cell model has a difference equation-based

simulation of signal propagation (i.e., perturbation propagation)

(Szalay & Csermely, 2020) in a system level human signalling network

containing 1997 nodes and 5004 interactions (version #4; Papp

et al., 2024). Version #8 of Simulated Cell is already graph neural

network-based, and the size of its network grew to 8000 nodes and

35,000 interactions (Daniel V. Veres, personal communication). Simu-

lated Cell was used to predict 66,348 drug combination–cell line pairs

of a combinatorial screen of 684 drug combinations across 97 cancer

cell lines. The network structure made the predictions interpretable,

and—as prior knowledge—extrapolated monotherapy-trained data to

combination therapy predictions. The study highlighted drug combina-

tion pairs that interact with DNA-damage response pathways, and

identified biomarkers driving the combination strategy and guiding clini-

cal translatability. Among others, this study highlighted the use of poly-

(ADP-ribose)-polymerase (PARP) inhibitors to overcome resistance

against ataxia-telangiectasia mutated kinase (ATM) inhibition, and WNT

inhibition against PARP inhibitor resistance (Papp et al., 2024).

6 | CHALLENGES TO BUILDING
PROTEOME-WIDE DRUG RESISTANCE
MODELS

We already have proteome-wide network data, hundreds of cancer-

related and drug resistance-related databases, network analysis

methods giving us priorities for network node integration into system

level models, as well as both small-scale and system level models of

cancer drug resistance. What are the challenges and next steps to

building proteome-wide drug resistance models? The growth in model

size raises several new questions, since the manual curation of data

and models becomes increasingly difficult. Current datasets often use

different identifiers, which hinders their combination. Data have dif-

ferent quality: many of them are experimentally verified. However, a

significant segment of data is only predicted. Therefore, confidence

scores of data are also needed. Moreover, both the network data and

models need to be comprehensive, findable, accessible, interoperable,

reusable and reproducible (Niarakis et al., 2022; Panneerselvam

et al., 2024; Touré et al., 2020). Due to the extraordinarily large model

size, special care must be taken in the validation of models, which

requires verifiable predictions and tests against reliable benchmarks

(Chang et al., 2023; Eckhart et al., 2024; Feng et al., 2024; Jia

et al., 2023; Piochi et al., 2023; Szalai et al., 2023; Wang et al., 2024).

The buildup, runs and analysis of proteome-wide models is greatly

helped by artificial intelligence (AI) technology. However, the rapid

development of AI has not yet specified its exact role in system level

models of drug resistance.

6.1 | Integration and confidence scores of network
and cancer multi-omics data

Network and cancer multi-omics databases (Bueschbell et al., 2022;

Huang et al., 2023; Panneerselvam et al., 2024; Siminea et al., 2024;

Touré et al., 2020; Yue & Dutta, 2022) often use different identifiers

for network constituent proteins and RNAs, as well as for mutated

proteins inducing cancer drug resistance, cancer drivers, drug targets,

cancer biomarkers, etc. For proteome-wide models an extensive

cross-reference of resource-specific identifiers is required. In recent

years, standards for both network and multi-omics data description

were described, and harmonized databases have been provided (Dai

et al., 2021; Diamant et al., 2025; Panneerselvam et al., 2024; Touré

et al., 2020). Integration of network and cancer multi-omics data

must also consider the different levels of data-reliability, since only a

part of the data is experimentally verified. MI2CAST (Touré et al.,

2020) and PSI MI (Panneerselvam et al., 2024) include comprehen-

sive confidence scores, as well as discriminating between required

core information and other details. However, an integrated, compre-

hensive list, annotation and confidence scores of cancer drug resis-

tance proteins (and noncoding RNAs) is missing. Such a dataset

would greatly help the construction of proteome-wide models of

drug resistance.

6.2 | Standardization of cancer network models

Standardization of input data is only a first step towards building of

cell-size network models. To build efficient, widely useable drug resis-

tance models, the interoperability and reusability of computational

models themselves must also be increased. In the last few years, an

intensified effort was taken to fulfil this initiative by the BioModels,

CoLoMoTo, COMBINE, SysMod and scTrends consortia (De Jonghe

et al., 2024;Niarakis et al., 2022; Puniya et al., 2024). In these efforts,

the community standards of the Systems Biology Graphical Notation

(SBGN) project, the Systems Biology Markup Language (SBML) and

the simulation experiment markup language (SED-ML) were devel-

oped (Tatka et al., 2023). Giving the minimum information about a

simulation experiment by the MIASE and MIRIAM checklists, and

keeping the FAIR principles for data stewardship are also recom-

mended to maximize reusability and ensure reproducibility (Niarakis

et al., 2022). These standardization methods have been already used

in building models of the epithelial-mesenchymal transition (Niarakis

et al., 2022; Puniya et al., 2024) and abnormal cancer metabolism
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(Puniya et al., 2024). The standardized models identified pathways of

cancer progression (Puniya et al., 2024).

6.3 | Proper benchmarks of cancer and drug
resistance models

Standardized data and models are only the initial steps for building

proteome-wide drug resistance models. Whole cell models require

proper benchmarks. Recently, the comprehensive benchmarking of syn-

thetic lethality prediction models in seven models of cancer tested on

four cancer cell lines (Feng et al., 2024), the identification of perturbed

cancer pathway in 12 types of cancer (Wang et al., 2024), as well as the

prediction of personalized anticancer drug response (Jia et al., 2023)

and anticancer drug sensitivity (drug resistance) (Eckhart et al., 2024;

Piochi et al., 2023; Szalai et al., 2023) were published. These studies

showed that a statistical bias detector framework correcting cell line-

and perturbation-specific biases (Szalai et al., 2023), screening of nega-

tive samples (Feng et al., 2024), removing results calculated during the

training process (Feng et al., 2024) and feature selection by the

minimum-redundancy-maximum-relevance principle (Eckhart

et al., 2024) may significantly improve model predictions. Standard met-

rics, like Pearson correlation, often cannot differentiate between

models, as simple models with uninformative features have similar per-

formance to ones using biologically informative features (Szalai

et al., 2023). Benchmark studies identified cancer-specific synthetic

lethality pairs (Feng et al., 2024), prognostic pathways across 12 cancer

types (Wang et al., 2024), drug repurposing options for potential anti-

cancer therapies (Wang et al., 2024), as well as BCL2L1 and SLC27A5

as potential drug resistance biomarkers (Eckhart et al., 2024).

6.4 | The help of AI in building proteome-wide
drug resistance models

Standardized input data, model structures and benchmarks give a sta-

ble framework for building proteome-wide cancer drug resistance

models. However, models larger than a few hundreds of nodes and a

thousand connections cannot be manually curated. Thus, proteome-

wide models need to use artificial intelligence (AI) for their assembly,

training and predictions. The recent boom of AI technologies led to

the development of foundation models (also known as AI-models),

which are machine learning models trained on a vast dataset often

including network data (Bunne et al., 2025; Rood et al., 2024). Impor-

tantly, network-based datasets not only give a highly organized,

machine-readable summary of prior knowledge, but also offer the ver-

ifiable interpretability of the results (Diamant et al., 2025; Valous

et al., 2024). AI-driven models have already been used for the integra-

tion of cancer multi-omics data to network data, cancer type classifi-

cation, cancer subtype analysis, cancer gene prediction, pathway

identification, stratification of cancer patients and the analysis of

resistance development (Bunne et al., 2025; Rood et al., 2024; Valous

et al., 2024).

7 | CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

In this review, we show that cancer drug resistance is a network phe-

nomenon mobilizing the entire cancer cell to evade drug action. Small-

scale PPI and signalling network models of cancer and drug resistance

focus on a specific segment of the interlinked molecular mechanisms

suggesting potential drug targets, and helping the design of personal-

ized drug combinations. Novel network analysis tools highlight key

network segments in large networks, which may initiate novel small-

scale models in the future. The availability of proteome-wide PPI and

signalling network data resolved an important obstacle to build system

level cancer drug resistance networks. We reviewed the available sys-

tem level models, which assess sensitivity of KRAS-mutated molecular

subgroups for PD-(L)1 immunotherapy in 776 patients (Padda

et al., 2021), conduct in silico clinical trials (patient stratification, selec-

tion of the potentially best-responder patient cohort and N-of-1 clini-

cal trials) (Castro et al., 2021; Castro et al., 2022) and provide system

level drug combination screens in a short time (Papp et al., 2024). We

listed the novel questions brought by the growing model size and vari-

ability. We also summarized the intensive community efforts to make

cancer and drug resistance network data and models interoperable

and reliable (Figure 2).

Our review was restricted to cancer drug resistance. However,

recent studies highlighted several similarities of drug survival of can-

cer cells, fungi and bacteria, for example, increased DNA damage

and general stress responses (El Meouche et al., 2024). These simi-

larities make several considerations of cancer drug resistance studies

useful in the design of new antibiotics and fungicides. In the last

4 years reviewed here there has been a rapid increase in publica-

tions in the fast-growing field of cancer drug resistance network

models. We apologize to those colleagues whose work we were

unable to cite.

The remarkable progress of recent studies revealed several areas

where further advances can be made in system level cancer drug

resistance network models. There is a pressing need to integrate the

time component of drug resistance development to proteome-wide

models leading to early and accurate prediction of escape trajectories.

This will help to set the balance of drug combination, dosing and

sequence strategies to kill enough cancer cells, but still limit the pres-

sure for drug resistance development. Current network models focus

on a single, drug-resistant cancer cell. There are ongoing efforts to

connect the PPI and signalling networks of neighbouring cells enrich-

ing the current models with the communication of cancer cells with

each other, tumour-associated macrophages, the vasculature and stro-

mal cells. We expect that growing network data and models will accel-

erate the attack on cancer drug resistance.

7.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, and
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are permanently archived in the Concise Guide to PHARMACOLOGY

2021/22 (Alexander, Fabbro, Kelly, Mathie, Peters, Veale, Armstrong,

Faccenda, Harding, Davies, Amarosi, et al., 2023; Alexander, Fabbro,

Kelly, Mathie, Peters, Veale, Armstrong, Faccenda, Harding, Davies,

Annett, et al., 2023; Alexander, Kelly, Mathie, Peters, Veale,

Armstrong, Buneman, Faccenda, Harding, Spedding, Cidlowski,

et al., 2023).
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