
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Distributed graph clustering engine

Master’s Thesis

Author Supervisor
Máté Szalay András Kövi

research associate

May 10th, 2010

II

Abstract

Abstract

The comparative analysis of complex interacting systems (such as biological, social or
technical systems) with graph models becomes a popular research field in the last decade.
One of the main challenges is to define the structure of the complex system by detecting
the dense parts, so called communities or clusters of the large graphs. The huge number
of different community definitions leads to dozens of graph clustering algorithms and lots
of different implementations. The Parallel Graph Algorithm Framework (ParaGrAPH)
was created to ensure the compatibility of community detection and other graph related
methods. This framework gives a Java plug-in interface for the developers to implement
distributed algorithms operating on large graphs. This thesis gives a short introduction of
graph clustering definitions, shows the architectural concepts, implementation details and
performance measurements of ParaGrAPH and describes the programming interfaces used
for plug-in development.

III

IV

Contents

Contents

Abstract III

Contents V

1 Introduction 1

1.1 Parallel Graph Algorithm Framework (ParaGrAPH) 2

2 Graph clustering 3

2.1 Local module definitions . 3

2.2 Global module definitions . 5

2.3 Other module definitions . 6

2.4 ModuLand clustering method family . 6

3 Architecture 9

3.1 Common layer structure . 10

3.2 ParaGrAPH server . 11

3.3 ParaGrAPH client . 13

3.4 ParaGrAPH GUI . 14

4 Implementation 15

4.1 Java Agent Developement Framework . 15

4.2 Plug-in and data distribution . 16

4.3 Life-cycle management . 18

4.4 Messaging between components . 20

4.5 Availability . 21

5 Developing ParaGrAPH plug-ins 25

5.1 Simple example: degree distribution . 25

5.2 Using the distributed graph database . 29

5.3 Creating and restoring backups . 31

V

Table of contents

6 Performance 33

6.1 Measured algorithms . 33

6.2 Graph size . 34

6.3 Scalability . 35

6.4 Update strategies . 37

7 Evaluation and Conclusion 41

7.1 Further improvements . 41

Acknowledgements 45

Appendix 47

A.1 Using ParaGrAPH . 47

A.2 Implemented members of the ModuLand algorithm family 50

A.2.1 LinkLand centrality landscape calculation 50

A.2.2 Proportional module assignement method 51

Bibliography 53

VI

Chapter 1

Introduction

The study of graph models (called networks) of complex natural or artificial systems has
proved very successful to understand both their structure and dynamism. One of the most
widely analyzed challenge in this field is the determination of community structure in the
graph, i.e. the dense parts of the networks (called clusters, communities or modules), in
which the network elements have a much stronger influence on each other than the rest of
the network.

Network communities help the functional organization and evolution of complex networks.
However, the development of a method, which is both fast and accurate, provides modular
overlaps and partitions of a heterogeneous network, is rather difficult. I am working on the
field of graph clustering together with some of my colleagues form the LinkGroup research
group of the Semmelweis Medical University in Budapest, with the guidance of professor
Péter Csermely. In one of our earlier publication [14] he collected the scientific publications
related to graph clustering. The number of papers can be seen in Figure 1.1.. Many different
concepts and cluster definitions exist, leading a huge number of different algorithms and
methods [11, 8, 24].

Figure 1.1: Time-scale of the development of modularization methods.

Parallel with this, some measurement and benchmark algorithm were developed by the
scientific community to compare the different module structures determined by different
methods [8, 16, 17]. This high diversity of methods solving the same base goal (i.e. graph
community detection) makes very important to create a framework to help the scientists
in this field to develop and compare their algorithms easier and more effective.

1

1. Introduction

1.1 Parallel Graph Algorithm Framework (ParaGrAPH)

For the reasons described before, the Parallel Graph Algorithm Framework (named as Para-
GrAPH from now) was created, capable to run user developed java plug-ins for clustering
and benchmarking algorithms or performing other type of calculations on large graphs.
The framework can be distributed to several computers, as well as used on one machine as
a standalone program.

All the design and development works related to the ParaGrAPH framework were done by
me during my last semester on the Measurement and Information Systems Department of
Budapest University of Technology and Economics.

Chapter 2 will discuss shortly the existing definitions related to graph clustering and show
the basic steps of a specific clustering algorithm family, called ModuLand.

The Chapter 3 gives a high level description of ParaGrAPH framework and shows the main
architectural concepts by defining its building components and services.

Chapter 4 gives a closer look to some implementation details and design decisions, like the
description of used open source tools and libraries, the introduction of plug-in and data
distribution, life-cycle management, messaging techniques and the issue of availability in
ParaGrAPH.

Then Chapter 5 will contain examples and a detailed how-to of plug-in development on
ParaGrAPH framework. It will be shown how can the developer reach the distributed graph
database or create periodic backups during the plug-in specific calculations.

Chapter 6 dealing with the question of performance. The results of measurements will
be shown, executed to study how the run-time is affected by the changing of various
parameters, like the size of the graph or the number of hosts used in ParaGrAPH.

Finally in Chapter 7, some of possible further improvements are gathered.

Some appendices are also attached to the thesis. In Appendix A.1 can be read the usage
of running the ParaGrAPH system and GUI. While in Appenndix A.2 can be found the
short description of the implemented members of ModuLand clustering method family used
during the performance measurements.

2

Chapter 2

Graph clustering

In this chapter I want to give a short summary of the clustering and comparation methods
developed recently. The definitions and the list of algorithms are based on the supple-
mentary information of a paper [14] published by some of my colleagues and me. This
paper defines a new algorithm family, called ModuLand, for detecting overlapping clusters
in graphs. Some member algorithm of this family were implemented to the ParaGrAPH
framework as well. More details about the ModuLand algorithms can be found for example
in Section 2.4.

In one sentence the clusters can be defined as the dense groups of the network, in which
the network elements have a much stronger influence on each other than the rest of the
network. However, the correct mathematical or algorithmical definition of the clusters is
much more complicated and diversified. In the next sections several definitions of graph
clusters (called also as modules or communities) were gathered.

2.1 Local module definitions

Traditionally in the sociology and graph theory, several cluster definitions are based on
’local’ topology. These definitions are usually quite exact in matematics point of view and
can be usefull in some specific cases. However, in real life networks many times many of
them have several weakness. According to the Supplementary Table S1 of [14] the following
’local’ module definitions exist1:

• Clique is a complete subgraph of size k, where complete means that any two of the
k elements are connected with each other.

• K-clan is a maximal connected subgraph having a subgraph-diameter less or equal to
k, where the subgraph-diameter is the maximal number of links amongst the shortest
paths inside the subgraph connecting any two elements of the subgraph [2, 23, 36].

• K-club is a connected subgraph, where the distance between elements of the sub-
graph is less or equal to k, and where no further elements can be added that have a
distance less or equal to k from all the existing elements of the subgraph [2, 23, 36].

1 some of the mathematical definitions were copied literally if the author was not able to find a more
understandable one

3

2. Graph clustering

• K-clique is a maximal connected subgraph having a diameter less or equal to k,
where the diameter is the maximal number of links amongst the shortest paths (in-
cluding those outside the subgraph), which connect any two elements of the subgraph
[20, 2, 23, 36].

• K-clique community is an union of all cliques with k elements that can be reached
from each other through a series of adjacent cliques with k elements, where two
adjacent cliques with k elements share k-1 elements (please note that in this definition
the term k-clique is also often used, which means a clique with k elements, and not
the k-clique as defined in this set of definitions; the definition may be extended to
include variable overlap between cliques) [3, 28].

• K-component is a maximal connected subgraph, where all possible partitions of
the subgraph must cut at least k edges [22].

• K-plex is a maximal connected subgraph, where each of the n elements of the sub-
graph is linked to at least n-k other elements in the same subgraph [34, 36].

• Strong LS-set is a maximal connected subgraph, where each subset of elements of
the subgraph (including the individual elements themselves) have more connections
with other elements of the subgraph than with elements outside the subgraph [36].

• LS-set is a maximal connected subgraph, where each element of the subgraph has
more connections with other elements of the subgraph than with elements outside of
the subgraph [36, 7].

• Lambda-set is a maximal connected subgraph, where each element of the subgraph
has a larger element-connectivity with other elements of the subgraph than with
elements outside of the subgraph (where element-connectivity means the minimum
number of elements that must be removed from the network in order to leave no path
between the two elements) [6, 36].

• Modified (weak) LS-set is a maximal connected subgraph, where the sum of the
inter-modular links of the subgraph is smaller than the sum of the intra-modular
edges [36].

• K-core is a maximal connected subgraph, where the elements of the subgraph are
connected to at least k other elements of the same subgraph; alternatively: the union
of all k-shells with indices greater or equal k, where the k-shell is defined as the set
of consecutively removed nodes and belonging links having a degree less or equal to
k [33, 36, 13].

As we can see, these cluster definitions do not take into consideration the strength of
a connection (weights of links in the graph), and many times there is a free parameter
(called K for example) which defines the scale of the cluster size, or the sensitivity of the
algorithm. It can lead to the well known problem, called giant component problem: these
conventional methods often can not find big and small communities at the same time. Raise
the detection limit too high, and find only the largest communities, or set the detection
limit too low, where most of the overlapping, large communities are already merged. If the
detection limit is small enough to find the smallest clusters, many times the whole network
is collapsed to a single giant-component [5, 10, 15].

There are many ways to handle the giant-component problem. The effect of the continuous
changing of the detection limit on the development of more and more details of the modular

4

2.2. Global module definitions

network structure can be nicely followed in the hierarchical clustering methods (see later).
Another solution to find both small and large communities is to simplify the network by
leaving out the links below an appropriately selected arbitrary link weight threshold [28].
This network simplification makes the communities more isolated, and enables to lower
the detection limit to see smaller communities but leaving larger communities still more-
less separated showing only a reasonably minor overlap. A third effective way of dealing
with the giant-component problem will be described in the ModuLand method family, see
Section 2.4.

2.2 Global module definitions

Beside the local community definition methods, there are several clustering algorithms
based on global measurements, such as the widely used modularity (Q) measurement.
In these global definitions a benefit function is used to give the quality of a division of
a network into modules or communities. For example good divisions has higher global
measurements than wrong divisions. If there is an exact formula to compare two module
structures, the whole clustering problem become an optimization question, and the chal-
lenge is to find the optimal clustering in the space of the possible module structures of the
given network.

The original definition of the Q modularity value was given by Mark Newman [11, 27]
Modularity compares the number of links inside a cluster with the expected number of edges
that one would find in the cluster if the network were a random network with the same
number of nodes and where each link keeps its degree, but links are otherwise randomly
attached. More precisely:

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj),

where A is the adjacency matrix of the network (Aij is defined as the number of links
between node i and j), m is the number of the links in the graph and ki is the degree of
node i. The ci is the group to which node i belongs and δ is the Kronecker delta symbol,
so δ(ci, cj) is 1 if node i and j belongs to the same community, otherwise it is zero.

In a random network with same degree parameters, the expected number of links falling
between two nodes i and j is kikj/2m, so the difference between the number of expected
links and real links is Aij − kikj/2m, summing over all pairs of vertices in the same group.

A huge number of cluster determination algorithm were developed to find the communities
based on the original Q modularity measurement, or one of its variant. For example using
hierarchical agglomeration (like split the original network into two module in a recursive
way) with greedy optimization [25], or using random walks on graph [29]. Other works
with multi-step greedy algorithms with vertex mover refinement [32], or using simulated
annealing [12, 21], mean field annealing [18] or linear programming [1].

There are many different variation of the original formula above. These variations usually
differs in the null-model, whose links are compared with the real network.

5

2. Graph clustering

2.3 Other module definitions

In the last years a lots of clustering algorithms were developed based on neither local
definitions nor optimization on global modularity functions. One new way is to define ele-
ment similarity measurements and say the clusters are subgraphs containing element-pairs,
which are similar to each other [19, 9, 8]. The similarity can based on distance, eigenvec-
tor components or even functional similarity coming from emergent network properties.
However, this later often may add an element of redundancy to the definition, since the
emergent function emerges many times from the modular structure itself.

An other interesting point of view is to define the cluster based on its information content,
as a set of subgraphs allowing the greatest compression of network structure with a minimal
loss of information [30, 31].

It is also possible to define modules based on the effect of simulated communication between
elements of the network (for example information propagation, like gossip in the social
networks, or perturbation flow in physical systems). In this case the communities can be
defined as a set of elements, displaying a larger communication among them than to the
rest of the network [28, 17, 35].

2.4 ModuLand clustering method family

Keeping in mind the huge diversity of cluster definitions, the members of the biological
network related LinkGroup research group on the Semmelweis University developed the
patented ModuLand method family, which gives common algorithmic structure for many
of earlier module definitions, and gives the opportunity to even enhance them. The four
basic steps of the ModuLand method family is shown on Figure 2.1.. This Figure and the
description of main steps of the algorithm is based on [14], published by my colleagues and
me.

Considering a real network as an interacting system, the quantitative simulation of the
influence (or indirect impact) of a given node on the rest of the network is an interesting
problem by itself. The first step of the ModuLand framework builds up these influence
functions (we call them as community heaps) for each and every network element. A com-
munity heap can be extended over the whole network, which would produce accurate,
but slow results, so practically it is beneficial to stop the influence simulation at a given
threshold. The LinkLand algorithm is one way to generate these community heaps, the
exact definition of this algorithm can be found in Appendix A.2.1. The ParaGrAPH plug-
in version is used for different measurements in Chapter 6. As an example, Figure 2.1.A
shows three community heaps defined over a co-authorship network published in [26].

As the second step of the ModuLand framework, the so called community landscape is
generated by summing up all the community heap values of a given link of the network
(which is the values of the influence functions of all other links of the network on the given
link), and making this summation for each link. In order to give a visual representation,
the resulting centrality-type values are plotted vertically over a 2D representation of the
network resulting in a 3D visual image of the community landscape heights as shown on
Figure 2.1.B . Now we can see hills and mountains of the community landscape consisting
of those elements, which influence each other stronger than the rest of the network. This is
exactly the same intuitive definition of modules, which was given in the second paragraph
of this Chapter.

6

2.4. ModuLand clustering method family

Figure 2.1: The main steps of the ModuLand method family.

The third and last step of the ModuLand method family identifies the modules of the
network by finding the prementioned hills and mountains of the community landscape,
and assigning the links and elements of the networks to these links (Figure 2.1.C). There
are many different ways to construct an algorithm for identifying the hills of the community
landscape, each of these algorithms is suitable for a range of applications, but not necessary
for all of them. One of the developed methods is called as proportional module assignement
method. The exact definition of this algorithm can be found in Appendix A.2.2. The
distributed version of this algorithm was also created as a ParaGrAPH plug-in.

Optionally, a higher level hierarchical representation of the network can also be created,
where the nodes of the higher level correspond to the modules of the original network, and
the links of the higher level correspond to the overlaps between the respective modules,
as can be seen in Figure 2.1.D. This hierarchical representation can be used recursively in
several steps until the whole original network is represented by noninteracting elements,
allowing a fast, zoom-in type analysis of large networks.

7

2. Graph clustering

8

Chapter 3

Architecture

In this chapter I will describe the architecture of the ParaGrAPH framework and the
function of its main components and packages. In the Figure 3.1. can be seen the high
level view of the tree main components and their connections.1 The framework is basically
distributed into a server program and client programs. The server is mainly responsible
for management and synchronization, while the clients running the distributed algorithms
and calculations on the graph. The users can manage the framework trough a management
GUI connected to the server. The ParaGrAPH system can be used also as a standalone
program, when all the three type of programs are running on the same machine.

Figure 3.1: High level view of ParaGrAPH system

The aim of the system is to run distributed algorithms (such as clustering algorithms) on
graphs. These algorithms are running on the system as user defined plug-ins. The developer
of a new plug-in has to create a plug-in part which is running on the clients and makes the
calculations, and an other part running on the server, responsible for managing the client
plug-ins. All the client components have their own view of the current graph. The graph is

1 The main components are marked with different colors in the same way in all figures of this thesis.
The server releated parts are blue, the client parts are green and the GUI parts are marked with orange.
The database related parts are colored to yellow, while the objects created by the plug-in developer are
purple.

9

3. Architecture

split into distinct parts, and each client is responsible for maintaining his part. Any given
plug-in instance can reach directly the graph part which is maintained by its client, and
with different operations he can see the whole graph, if it is needed. For more information
on the distributed plug-in and graph database concepts, see Section 4.2.

3.1 Common layer structure

Both the server and the client component in the ParaGrAPH system follow the same layer
structure, as can be seen in the Figures 3.2. and 3.3.. Three different layer are separated
from each other. The lowest layer is called as control layer, the middle one is the Service
layer and the third is called as the Plug-in layer. Each layer has common parts both in the
server and client programs.

The Control layer has many responsibilities, such as:

• managing the life cycle of the program

• giving an entry point to the given program (the control layer is starting when the
user starts the given server or client programs)

• initializing the other layers

• giving an universal messaging interface for the inter-component communication

• taking care of backup creation and restoration of the whole program

• giving a message-based synchronous event handler mechanism to the services

Most of these topics will be discussed later in this thesis. The Section 4.5 describes the
backup creation, health check and availability issues, Section 4.4 shows the communication
mechanism between components and Section 4.3 shows the state and sequence diagrams of
the ParaGrAPH framework concerning also the question of service initialization and life-
cycle management. However, the important common concept of message based synchronous
event handler mechanism in the Control layer will be shortly discussed here.

In order to avoid synchronization problems and to make the state machine design of the
services easier, the framework assures that only one service can be running in the given
component at one time. A main event handler was introduced (as the technical realization,
the Jade behavior scheduler was used, see Section 4.1). All events like parsing incoming and
sending outgoing messages or changing states in case of any service or other component in
the program, all these events are added to the main event handler queue of the Control
layer. This makes the design easier, because only one thread is needed in case of the server,
and only two in case of the client programs and the state transitions in the state machines
of services can be executed as atomic operations.

The second layer is called as Service layer. It contains many components, each of them is
offering a specific service to the other two layers. Some services are common both in the
server and in the client programs, and some are different. The common services are:

• Logger service: Every component can use the logger service to log different type of
events. Several type of events are distinguished, like debug, normal, warning, status,

10

3.2. ParaGrAPH server

statistics, exception, alarm, database, etc. There is a filter in the logger service which
contains the currently valid event types. The filter can be altered in the GUI and
the logs can be printed out to the console, or stored in separated files. The current
structure can be easily enhanced by supporting database output or other distributed
log storage.

• Context service: By this service, all the other components and services can reach each
other inside a given server or client program. The different services (like the messaging
and life-cycle management services of the control layer or the logger, plug-in runner
and database handler services) are registered in the same singleton context object. It
helps the components to find the currently valid service objects. For example there
can be different realization of the logger module (like file logger, database logger, etc.).
The active logger implementation can register itself in the local context service, and
all local packages can retrieve this configured logger service from the context.

• Health Check service: Every program has the opportunity to check the health status
of the others. Usually the client and GUI programs check the status of the server,
while the server program checks the status of both of the GUI and the clients. For
more information about health check, backup and aviability issues, please see Chapter
4.5.

There are some server or client specific services in the second layer, which will be described
in Sections 3.2 and 3.3.

The third layer is called Plug-in layer. It contains the plug-in and plug-in manager ob-
jects representing the distributed graph algorithms running on the ParaGrAPH framework.
These plug-in related objects are of course different on server and on client programs. How-
ever, the package called plug-in factory is the same. It is responsible for creating the plug-in
and plug-in manager objects based on the same identifier, contains the name of the plug-in
and the name of the plug-in type (so called package prefix). The plug-in objects contains
the distributed algorithm itself. These objects are initialized and running by the plug-in
runner component on client side. The plug-in manager objects on the server side are re-
sponsible for the synchronization and management of these plug-in objects. The plug-in
manager objects are handled by the plug-in scheduler service in the ParaGrAPH server
program. For more information about the plug-in handling mechanism see the Section 4.2
and for the ways of plug-in development see Chapter 5.

3.2 ParaGrAPH server

The architectural view of ParaGrAPH server program can be seen in Figure 3.2.. This
program is responsible for synchronizing the clients’ life-cycle. For example in the beginning
of a new project the server program registers the available clients for work, broadcasting
them the unique client IDs, sending them the requests for loading their last backup, running
plug-ins, making them quit, etc. (more details about the life-cycle management can be
found in Section 4.3).

The user management component communicates with the GUI. In the current implemen-
tation only one GUI can be connected at one time. The server is acting as a bridge to send
the alarms and status messages of the clients and plug-ins to the management GUI. The
GUI can disconnect from and reconnect to the server at any time, it will not effect the
current work of the system.

11

3. Architecture

Figure 3.2: The architecture of the ParaGrAPH server component.

The system can work only on one graph structure at a time. However, one graph can contain
more than one separated subgraphs (components), so it up to the plug-in developer to make
calculations on different networks. But there is no possibility to run two different plug-ins
in one ParaGrAPH system simultaneously. The plug-in scheduler component in the server
program maintains an algorithm queue to store the requests coming from the GUI. This
package coordinates the state machine of the client plug-ins, and indirectly the state of the
distributed graph database too.

The graph data from the distributed graph database can not be reached by the server
program, but all the client plug-in can send back result information during its work, which
can help the plug-in manager to manage the work and make decisions. The plug-in manager
objects created by the developer using ParaGrAPH framework contains the business logic
of plug-in management. Every plug-in can contain several distributed jobs. The plug-in
manager object decides which clients run which jobs, they can set the parameters of the
jobs separately for each client and retrieve the result information after the running of each
job. More information about the plug-in and data distribution can be found in Section
4.2, and about the plug-in development relating interfaces and working code examples in
Chapter 5.

The whole ParaGrAPH system creates backup files periodically. In case of a failure the
whole system can be restarted from the last saved state. Every backup on server side
contains the state of the plug-in manager object, the unique ID of the current project
and the number of connected clients. During the loading of backups, the server waits until
every client restored its own last state of the given project before it starts the plug-ins.
The backups are saved in two phase to ensure there is always one valid backup file even
if the error happens during the creation of the backup. For more information about the
availability issues please see Section 4.5.

12

3.3. ParaGrAPH client

3.3 ParaGrAPH client

The main components of the ParaGrAPH client can be seen in Figure 3.3.. Beside the
common components described in Section 3.1 there are also several client specific functions.
After starting a client, it will register itself in a global yellow-pages service and waits for
the server to select him for work (see Section 4.3). Every client has an unique ID number to
distinguish the different clients in the plug-in manager objet on server side. This number
is used also in clients to identify the owner of the distributed database objects and also
appears in the logs to make the debug activities easier. The unique ID is saved in the
backups of the clients too, so it will remain the same during the whole project. The unique
ID for the given client is decided and sent by the server.

Figure 3.3: The architecture of the ParaGrAPH client component.

The client programs are responsible for running the distributed algorithms developed as
plug-ins in the ParaGrAPH framework on the distributed graph database. The graph
related data can be reached in the plug-ins by using the graph database handler service.
In the current implementation no real database is used, but the graph related data is
stored in an optimized object structure in the memory. Every object in the graph database
has an owner client. If the plug-in reads or changes a local database object, the database
handler can simply retrieve this object from the local store. If the plug-in works on a
non-local data object, then a cached copy is maintained by the database handler locally.
Every plug-in may contain several jobs, and every change on the local cached data object
copies will be committed to their real owner simultaneously by all the clients in the end of
every distributed job. This behavior of the distributed database basically affects the state
machines of the database handler and plug-in runner components, and very important to
understand for the plug-in developers in order to create optimized distributed algorithms.
In the whole ParaGrAPH system only one specific job of a given plug-in can run at a time.
The synchrony is maintained by the plug-in manager service of the ParaGrAPH server,
which requests to loading of the given plug-in on the client and the running of the given
job inside this plug-in. The commit phase starts after all the requested clients finished their
job. More information about the plug-in and graph database distribution can be read in
Section 4.2, and about optimized plug-in development in Chapter 5.

The clients also create backup files separately. The ParaGrAPH framework creates a backup

13

3. Architecture

automatically in the beginning of every job. This backup contains the project, the plug-
in and the job identifiers, the current view of the distributed graph database and the
parameters of the job sent by the plug-in manager object from the ParaGrAPH server.
The developer of the plug-in can also asks the framework to create a backup file during
his algorithm (it is highly recommended if the job requires long time to run and its state
can be saved and restored relatively easily). However, in this case the plug-in developer
needs to define the state saving and loading procedures of his plug-in. The description of
this backup handling concept can be seen in Section 4.5, and a working example is shown
in Section 5.3.

3.4 ParaGrAPH GUI

The ParaGrAPH GUI program is basically a simple user interface, responsible for:

• locate and connect to the server program

• send the name (identifier) of required plug-ins and their parameters to the server

• retrieve from the server and show to the user the status messages and alarms

The ParaGrAPH GUI program do not share the same layer structure as the server and
client programs. It contains two separated layers, as can be seen in Figure 3.4.. The first
(bottom) one is communicating with the server program while the second is for realizing the
graphical functions and dialogs. The communication with the server is happening trough a
fixed message protocol, called management protocol. So in the future just by changing the
second layer it will be possible to create other management interfaces for command line
use, or for processing project descriptor XML or text files.

Figure 3.4: The architecture of the ParaGrAPH GUI component.

Currently the plug-ins can show their results by changing the distributed graph database,
creating data files, logs or status messages toward the GUI. However, in the future it
would be a nice improvement if the plug-ins could embed their own graphical interface to
the ParaGrAPH GUI component.

The usage of ParaGrAPH GUI with screenshots can be found in Appendix A.1.

14

Chapter 4

Implementation

The whole ParaGrAPH framework is implemented in Java, makes it fully platform inde-
pendent. No commercial program was used during the development, just the latest versions
of Java, Ant, Eclipse IDE and JADE, could be reached in the beginning of development.
More precisely:

• Sun Java 6 (build 1.6.0_18)

• Apache Ant 1.8.0 (build on February 1 2010)

• Eclipse Galileo (Build id: 20100218-1602)

• JADE 3.7 (01/07/2009)1

In the near future the project will be uploaded to the SourceForge2 open source software
directory under LGPL3 license. In Appendix A.1 can be found more information about
the different Ant targets responsible for building the jar file and starting the ParaGrAPH
framework.

4.1 Java Agent Developement Framework

This thesis does not contain the accurate description of the Java Agent Development
Framework, called JADE. The following brief introduction is based on the technical de-
scriptions, programming tutorials and other documentations can be found on the homepage
of the project (http://jade.cselt.it) and contain much deeper specification of JADE.

The JADE framework is a distributed java platform to develop agent based programs com-
pliance with the FIPA standards. FIPA by its own definition4 is the Foundation for Intel-
ligent Physical Agents, an IEEE Computer Society standards organization that promotes
agent-based technology and the interoperability of its standards with other technologies.

The JADE runs agent objects, may be distributed on several host, and contains many
services to support the functioning of these agents, like: naming service, yellow-pages ser-
vice, inter-agent communication service and predefined interaction protocols. On each host

1 the latest JADE version is 4.0 now (last build: 20/04/2010)
2 http://sourceforge.net
3 GNU Lesser General Public License: http://en.wikipedia.org/wiki/LGPL
4 http://www.fipa.org

15

http://jade.cselt.it
http://sourceforge.net
http://en.wikipedia.org/wiki/LGPL
http://www.fipa.org

4. Implementation

only one JVM5 needs to run, contains the JADE framework together with agents. In Para-
GrAPH, three agents were developed: the server, client and GUI agents.

Each agent in JADE has its own Java thread and can contain several tasks, called behaviors
in JADE term. These behaviors can be run in different threads or can be running sequen-
tially secluded by the agent’s own cooperative mechanism, where by default the tasks are
not interrupted by the agent. ParaGrAPH usually uses the JADE scheduler to ensure the
safe and effective operation. However on client side a separate thread is needed for running
the plug-in objects and handling the synchronous update of distributed database objects
(see Figure 4.3.).

4.2 Plug-in and data distribution

The concept of algorithm distribution in ParaGrAPH (see in Figure 4.1.) is quite similar
to the Google’s map-reduce technique. The ’map’ part is done by the clients in the plug-in
objects, while the ’reduce’ parts by the server in the plug-in manager objects (and by the
distributed graph database). According to this concept, the original problem is solved by
splitting the algorithm into steps, so called jobs in ParaGrAPH. The clients working on
a job together then send their results back to the server. After every client is done, the
server checks the results, make its decisions and request the clients to run a new job.

Figure 4.1: The algorithm distribution concept in ParaGrAPH.

During the run of a job, all the client has his own view of the graph database. The modi-
fications done by the given client are hidden from the others. After all clients finished the
current job, in the ’reduce’ phase the modifications made by the clients are all merged to
the distributed database. The simplified version of the state machine used in ParaGrAPH
plug-in scheduler can be seen in Figure 4.2..

5 Java Virtual Machine

16

4.2. Plug-in and data distribution

Figure 4.2: Main states in the plug-in scheduler component of the server pro-
gram.

Initially no plug-in is running in the system. The plug-in scheduler component in the server
program maintains a queue to store the plug-ins requested by the user. Only one plug-in
can be active at one time in ParaGrAPH.

When a new plug-in is about to start, the scheduler has to initialize it on the server and
asks the clients to do the same. The state can not be changed until both the server and
the clients finished their initialization. Among others, here happen the creation of plug-in
manager object (on server side) and plug-in objects (on client side) by the plug-in factory.
These objects were implemented by the developer of the current distributed algorithm.
The factory requires the name of the plug-in and the package prefix in order to create the
objects both in client and server side.

After everyone finished the initialization, the plug-in object on the server decides which
job will run. Only one job can be active at one time, but it is not necessary for all the
clients to be active and run the selected job simultaneously. For example in case of I/O
plug-ins, it is possible that one client is enough to run the given job. The plug-in manager
is responsible for selecting the next job and for the decision of which client will be active.
Based on the plug-in manager’s commands, the plug-in scheduler service sends the run job
requests to the selected clients. Each client can get also different parameters among the ID
of the active job.

While the clients are working on the current job, the server is waiting. When the plug-in is
running on a selected client, it operates on the distributed graph database. All the objects
stored in the DB belongs to a client which is responsible for it. In the given client’s point
of view an object is called local, if the same client is responsible for it. When the plug-in
reads or writes non-local objects, it is possible the objects are not up to date. It needs
to be asked from the responsible client. For example in Figure 4.3. the plug-in running in
client A wants to read a non-local edge object E. First the database handler recognizes it
has no up-to-date version of the requested object. Then it stops the job thread in client A
and send an update request to client B who is the owner of object E. Client B respond the
request of client A and sends back the valid version of edge object E. This version shows
the state of edge object E at the very beginning of the job, so it does not contain the
possible modifications on this object during the current job. When the database handler
in the main thread gets the response, it updates his edge object E in his local storage and
wakes up the job thread in client A. The job can now continue its work.

If the jobs are operating on a large amount of non-local object, this update mechanism
can take a lot of time. In this case it worth to update the whole network by some large
query and not to ask it in case of every single object. The later technique is also supported

17

4. Implementation

by the ParaGrAPH system. The desired behavior can be selected in the GUI among the
parameters of the plug-ins. The two update mechanisms are compared in Section 6.4.

Figure 4.3: Update mechanism on distributed database object during the run
of jobs on clients.

After all requested client sent back the results of the last run to the server, the plug-in
scheduler directs the clients to commit their changes on non-local objects to their owners.
If more than one client changed the given object during the job, it is nondeterministic
which client’s view on the object will survive, but one of them will completely. One ex-
ception is allowed: if the plug-in developer marks a property as ’cumulated’, then all the
changes will increase the original value of the given property. For an example please see
the ’height’ values in implementation of LinkLand plug-in. More information about the
available operations on the distributed database can be read in Section 5.2.

If every clients finished the database merge phase, the plug-in manager object on the server
side decides the next move, based on its own business logic and the results of the jobs sent
back from the clients. It can run an other job, or finish the plug-in too.

4.3 Life-cycle management

Both the server and client programs use the same main concurrency model, inherited from
the JADE Agent class. The concurrent events are added to the event handler queue and
handled sequentially. The scheduling of behaviors in JADE is not pre-emptive (like in case
of Java threads), but cooperative. It means when a behavior is scheduled for execution,
there is no guaranty it will be ever finished to let the other behaviors work. This is one
of the reasons why the client has two separated Java thread, one for the ParaGrAPH
framework itself and one other is given to the developer of the distributed plug-in.

18

4.3. Life-cycle management

Figure 4.4: The sequence diagram of a ParaGrAPH client start up.

In Figure 4.4. can be seen the initialization of the most important behaviors in the Para-
GrAPH client program. When the user starts the client with the given Ant target, the
JADE framework will be initialized and the control agent of the client will be started.
First the JADE will call the overridden setup function of the agent, which will regis-
ter the client in the yellow-pages service of the JADE, and creates a new behavior named
ProcessControlMessages, surprisingly having the responsibility for processing the control
messages came from the ParaGrAPH server. The setup function also register the control
service (what is basically the control agent itself hided with an interface) in the Context
service, which is a local static service reference storage for the given client.

When the server wants to create a new project, first makes a lookup in the JADE yellow-
pages to find the available clients. The server has a built-in limit set to 20 (which should be
a changeable parameter in the future) on the maximal number of clients in a given project.
The server chooses the first 20 available clients and sends them a NEW_PROJECT control
message. The ProcessControlMessages object is a cyclic behavior, only activated when a
control message arrives. If there is no control message in the message queue, the behavior
goes to the waiting JADE state. When the server sends the NEW_PROJECT control
message, the ProcessControlMessages behavior in the client will wake up and receive
the message from the JADE framework.

Then it will initialize a new project by closing the old services (not shown in the figure) and
create new database and plug-in service related objects. It creates two separate behavior
for processing the database messages from other clients and plug-in messages from the

19

4. Implementation

plug-in scheduler service on the server. These behaviors will be added to the control client
agent’s JADE scheduler. New objects for the second layer services are also created here,
like in case of the Database Handler and Plug-in Runner services, or the Logger service
not shown here. And before everything else, a new one time running behavior is created
and added to the agent, which behavior is responsible for making some initialization in the
distributed graph database right after all the services are properly created. Every service
registered itself in the Context object to make itself reachable from any other services on
the given client.

4.4 Messaging between components

The messaging between ParaGrAPH server, client and GUI programs is done over the
inter-agent communication service of the JADE framework. Among others, it supports the
asynchronous sending of ACLMessage objects to one or more recipients. In our project
this message object is logically covered with a general abstract message object called
ParagraphMessage, which contains several information (like message type, string map
with parameter name and value pairs and possible binary content as serializable object),
and can be used as base class for the extended service specific message objects.

Five kind of logical message channels are used in the ParaGrAPH framework. Each channel
is marked with a so called ontology identifier in the JADE ACL messages to help the
separation of incoming message events by services. Aligned with the concurrency model
used in ParaGrAPH, all the sending and receiving of messages are basically different events,
named behaviors in JADE term. These behaviors are added to the queue of the scheduler
used by JADE for each agent. For all service wanted to communicate with other components
in ParaGrAPH, a cyclic behavior is defined for processing its own messages.

Figure 4.5. shows the main concept of messaging and the message channels in case of the
server-client communication. The JADE and the messaging service in ParaGrAPH together
taking care of the logical channels look to be separated for the services communicate trough
them. The five logical channels are used for transmitting the following type of service
specific messages:

• Plug-in messages travel between the Plug-in Scheduler on server and Plug-in Runner
on client side. Basically the Scheduler sends here requests to the client for starting
the different phases of plug-in running (initialize plug-in, running job, doing database
merge, etc.). Usually the server needs to wait for the responses of all client before
sending the next request.

• Control messages are used for the life-cycle management of the ParaGrAPH frame-
work (creating new project, restoring backup, closing the framework, etc.) This chan-
nel is also running between the server and every client.

• Health-check messages are used for monitoring the status of server, client or GUI
programs by the others.

• Database Messages travel only between clients to update or commit distributed
database objects. The asynchronous commit messages contain a set of distributed
database objects, currently maximum 200 objects in one message. (This parameter
should be free to change in the future) The update mechanism happens during the
run of jobs and needs to be synchronized. There are two different update request

20

4.5. Availability

Figure 4.5: The communication between the ParaGrAPH server and client
programs.

messages. One requires the update of a specific object sending its identifier and cur-
rent local version number. In case of the other mechanism all the database object
owned by the given recipient is requested with one signal. The response in this case
is also a set of object.

• Management Messages are used in the communication between the server and the
GUI. The GUI can connect and disconnect from the server, start new projects, restore
backup, run different plug-ins or close the whole ParaGrAPH framework with the
help of the management messaging protocol.

4.5 Availability

On availability point of view, the distributed ParaGrAPH system architecture has lots of
challenges to be solved. Some hints on possible single point of failures:

• There is only one server in the system responsible for the whole synchronization (no
hot swap at the moment).

• The messaging service used in ParaGrAPH relies entirely on JADE. If a lower level
JADE message lost, there is no function of resending in ParaGrAPH and one missing
message in most cases leads to the blocking of the whole system.

• The database objects can be cached in many clients, but only one has the up to date
primary replica. If a client fails, all of the distributed graph database object he is
responsible for will be lost.

21

4. Implementation

• The ParaGrAPH clients and server run plug-in code not verified during the devel-
opment of the framework. There is no automatic process now to handle if a plug-in
manager object on server side or a plug-in object on client side fails for example with
an exception or going to an infinite loop.

• etc.

For ensure the high availability and fault tolerance, these issues should be considered among
others. Some of them can be soften or solved by relying on JADE solutions6 released in
the earlier or recent version 4.0. (In the beginning of the development only version 3.7 was
available.) While the solving of other issues will be one of the future enhancements in the
next ParaGrAPH versions.

Figure 4.6: Restoring backup after error during long time plug-in calculation.

The current version of ParaGrAPH is not for supporting mission critical graph clusteri-
zation with "five nine" availability. However, the most of failures can possibly cause the
loss of an unacceptable amount of time in case of huge calculations take many days or
even more. For minimizing these time loss we introduced an automatic backup creation
mechanism and a currently manual restoring function. The basic idea is to save the state

6 like the enhancedMainReplicationService with support for application specific checks on connectivity
status when a the primary JADE framework (main container) replica is considered dead due to a long
disconnection

22

4.5. Availability

of the system in the beginning of each distributed job and give the possibility to the plug-
in developers to create personalized checkpoints into their plug-ins (see Section 5.3). The
sequence diagram of Figure 4.6. shows a possible failure scenario.

The backups are created to the file system (preferably to some reliable local or network
storage). On server side it contains the identifiers of the current project, plug-in and job, to-
gether with other state variables (like for example the serializable result objects optionally
sent by the clients in the end of the last job, etc.). The ParaGrAPH framework automat-
ically creates backups on each client right before the start of any job. Among others it
contains the whole current view of the distributed database, the project, plug-in and job
identifiers and the incoming job parameters sent by the server. If an error happens, the
system can be restored to continue the calculations on last saved state. In worst case on
the beginning of the last job. However, in case of long jobs it is highly recommended for
the plug-in developer to initiate backup creation during the calculations.

There is a health check service implemented in ParaGrAPH to give the possibility for
each program (like the server, clients and GUI) to monitor the status of the others. This
function is basically for detecting a failure of one or some program (a client or server host).
In case of a client error, the server can start the restoring procedure automatically, while
in case of a server error the client components can make a last backup and then wait for
the beginning of a restoring procedure by the new server or make a graceful shutdown.
However, this health check function is disabled by now, because with the current JADE
agent implementations many times in case of the failure of one JADE host, the whole JADE
system collapses with all ParaGrAPH server, client and GUI programs, making the status
monitoring functionality quite unnecessary. There are several way to solve this problem
in the future versions of ParaGrAPH, like using enhanced JADE techniques or using non-
JADE health check and availability management services (e.g. SAForum7 implementations)
to monitor the state of ParaGrAPH hosts and restarting them in case of a failure.

7 Service Availability Forum: http://www.saforum.org

23

http://www.saforum.org

4. Implementation

24

Chapter 5

Developing ParaGrAPH plug-ins

This chapter contains a simplified tutorial on developing plug-ins to the ParaGrAPH frame-
work. For creating a distributed algorithm, there is no need to see trough the implementa-
tion of the whole ParaGrAPH system. However, for the optimal performance it may help
to understand the main concepts, especial the issues of plug-in and data distribution (see
Section 4.2).

The development of a ParaGrAPH plug-in has three practical steps:

1. implementing a distributed plug-in object (will be run on client programs)

2. implementing a plug-in manager object (will be run on server program)

3. make sure the same version of the new objects are distributed on all ParaGrAPH
instance

Currently there is no version control of plug-ins, and no central spreading mechanism to
propagate (or even test) the developed plug-in class files trough the system, so at the
moment it must be done manually.

5.1 Simple example: degree distribution

The basic concepts of plug-in development will be introduced on a simple ’hello world’ like
algorithm. Here can be find the java source of a plug-in to calculate the degree distribution
of a graph (where degree of a node means the number of the links connected to it):

1 package hu . l inkgroup . paragraph . p lug in . g ene ra l ;
2
3 import java . u t i l . HashMap ;
4 import hu . l inkgroup . paragraph . framework . s e r v i c e s . l o gg e r . Logger . LogType ;
5 import hu . l inkgroup . paragraph . moduledb . i n t e r f a c e s . Node ;
6 import hu . l inkgroup . paragraph . p lug in . Distr ibutedJobBase ;
7 import hu . l inkgroup . paragraph . p lug in . Di s t r ibutedPlug inBase ;

The class is located in the hu.linkgroup.paragraph.plugin.general package. Every
plug-in class must be somewhere in the hu.linkgroup.paragraph.plugin package, but
the developer can create any sub package here. Both the plug-in and plug-in manager
objects must be in the same package.

25

5. Developing ParaGrAPH plug-ins

9 pub l i c c l a s s DegreeDi s t r ibut i on extends Dis t r ibutedPlug inBase {
10
11 // the s t a t i c job IDs :
12 pub l i c s t a t i c f i n a l i n t CALC_LOCAL_DEGREE_DIST = 0 ;
13
14 pub l i c DegreeDi s t r ibut i on () {
15 super () ;
16
17 //add a l l the job to the plug−in :
18 addJob (new CalcLocalDegreeDist () ,CALC_LOCAL_DEGREE_DIST) ;
19 }

Every plug-in class must extend the DistributedPluginBase class, and overload its con-
structor, as can be seen in the example. The degree distribution calculator plug-in has only
one job, but usually more than one job is needed to cover a complex distributed algorithm.
Every job has a static positive integer ID, used for example by the plug-in manager to
request the clients to run the job with the given ID. The jobs are represented as objects
too, and there is a map maintained by the DistributedPluginBase object, where the job
ID and job object pairs are stored. The job object instances are added to this map in the
overloaded constructor. The plug-in class must not contain any information about the state
of the current plug-in, because only the state of the active job will be saving and restoring
during the backup handling (see Section 5.3).

It is a good practice to implement the distributed jobs as inner classes of the plug-in object,
if the length of these objects does not suggest to separate them into different java class
files. The CalcLocalDegreeDist class is defined here:

21 pub l i c c l a s s CalcLocalDegreeDist extends Distr ibutedJobBase {
22
23 @Override
24 pub l i c void runJob () {
25
26 // p r i n t out some debug log . . .
27 l o gg e r . l og (" s t a r t i n g j o b : " + getJobName () , LogType .DEBUG, t h i s) ;

Every job class must extend the DistributedJobBase class, and overload at least one of
its function, called runJob. This function will be run by the plug-in runner component of
the client program and it is responsible for running the distributed algorithm itself.

The distributed job object can reach the logger service of the ParaGrAPH client. In line
27 the logger service is used to create a debug type log event. The getJobName() method
gives back the name of the current job. It is used by the framework only for logging
purposes, it can be overloaded to give some more sophisticated information about the job.
By default it gives back the simple name of the job object.

29 // c r e a t e the map conta in s the r e s u l t d i s t r i b u t i o n
30 HashMap<Integer , Integer> degDist = new HashMap<Integer , Integer >() ;
31
32 //go trough the l o c a l nodes
33 f o r (Node node : network . getLocalNodes ()) {
34 i n t degree = node . getConnectedEdges () . s i z e () ; // get degree
35
36 // get the cur rent f requency o f the g iven degree
37 i n t f requency = 1 ;
38 i f (degDist . containsKey (degree))
39 f requency += degDist . get (degree) ;
40

26

5.1. Simple example: degree distribution

41 degDist . put (degree , f requency) ; // save new frequency value
42 }

When the plug-in manager sends the job run request to any client, it can send a parameter
list too. This parameter list is stored in the parent class of the distributed job instance
in the variable named parameters. The type of this object is Map<String,String>, and
containing the parameter name and value pairs sent by the server when requires to start
the given job. It is not necessary for the server to specify parameters, in which case the
value of the parameters variable is null.

The local view of distributed graph database can be reached trough the network object
inside the job class (see line 27). There are numerous handful functions to get the informa-
tion about the node, link and module objects. For example the getLocalNodes() function
gives back a set of references to the local node objects. The detailed description of the
database interface can be read in Section 5.2.

43 jobFin i shed (degDist) ; // s e t r e s u l t
44 }
45 }
46 }

After the plug-in finished the counting of node degrees in the last code line of the runJob()
function, it sets the result object to send back to the server (see line 43), and informs it
about finishing the job. The jobFinished function has one parameter, the serializable
result object. If this function gets null as parameter, it will inform the server there is
no result object in the end of the given distributed job instance. It is possible that some
clients send back result and some others not in case of the same job.

The plug-in objects are running on client side, but every plug-in is synchronized by a plug-
in manager object on server side (see Section 4.2). The source code of the later is starting
below.

1 package hu . l inkgroup . paragraph . p lug in . g ene ra l ;
2
3 import java . u t i l . HashMap ;
4 import java . u t i l . TreeMap ;
5 import java . u t i l .Map. Entry ;
6 import hu . l inkgroup . paragraph . framework . s e r v i c e s . l o gg e r . Logger . LogType ;
7 import hu . l inkgroup . paragraph . p lug in . Distr ibutedPluginManagerBase ;

The DegreeDistributionManager object has to be located in the same package as the
plug-in object, always somewhere inside the hu.linkgroup.paragraph.plugin package.
In the GUI, when the user wants to run this plug-in, he will need to give two things as
parameter: the name of the plug-in (’DegreeDistribution’ in this case), and the package
prefix (what is ’general ’ now, according to the line 1).

8
9 pub l i c c l a s s DegreeDistr ibut ionManager

10 extends Distr ibutedPluginManagerBase {
11
12 @Override
13 pub l i c void runNextJob () {
14 super . runNextJob () ;
15
16 // a s imple s t a t e machine , where the
17 // s t a t e i s coded with the ac tua l job ID
18 switch (actJobId) {

27

5. Developing ParaGrAPH plug-ins

19 case NO_JOB: //no job run yet
20 actJobId = DegreeDi s t r ibut i on .CALC_LOCAL_DEGREE_DIST;
21 f o r (i n t i =0; i<clientNum ; i++) {
22 p lug inSchedu l e r . sendRunJobReq (i , actJobId ,
23 /∗ jobParameters ∗/ nul l , clientNum) ;
24 }
25 l ogg e r . l og (" l o c a l d e g r e e d i s t r i b u t i o n j o b s s t a r t e d " ,
26 LogType .DEBUG, t h i s) ;
27 break ;

The plug-in manager objects must extend the DistributedPluginManagerBase object and
override at least one function, called runNextJob. This function contains the business logic
of the plug-in manager. It will be called each time, when the plug-in scheduler on the
server needs to make a decision about what to do next (see Figure 4.2.). It is called in the
beginning of the plug-in after the initialization, and every time when the clients finished
the current job and the merge phase is over. Basically it is a simple state machine, where
the state is stored in the integer variable named actJobId of the parent object. The initial
value of this state variable is the NO_JOB constant. Any time the runNextJob is called, it
can change its state. The developer can use also other local objects in the plug-in manager
to store the current state, but in this case he needs to override the default backup functions
to store the new state objects too (see Section 5.3).

First the plug-in manager sets the actJobId variable to the current job ID, defined in
the plug-in object as static variable. Then requests all clients to run the same job (see
line 20). The number of clients is stored in the clientNum variable of the parent class.
The services of the plug-in scheduler component can be reached by the pluginScheduler
variable, also initialized by the parent class. The sendRunJobReq method is putting a new
event to the main event handler queue, which will send a run job request message to the
given client. This method has four parameters: the ID of the given client, the ID of the
given job, the parameter object if it exists, and the number of the clients will working
on jobs simultaneously. The third one, the job parameter map object is not mandatory,
if there is no parameter, it can be sign with null. If there is any parameter, then the
parameter name and value pairs must be given in a Map<String,String> data type.

29
30 case DegreeDi s t r ibut i on .CALC_LOCAL_DEGREE_DIST:
31 TreeMap<Integer , Integer> d i s t = new TreeMap<Integer , Integer >() ;
32 // p ro c e s s i ng the r e s u l t s
33 f o r (HashMap<Integer , Integer> r e s :
34 (HashMap<Integer , Integer > []) l a s tR e s u l t s) {
35 // p ro c e s s i ng a s i n g l e d i s t r i b u t i o n o f a g iven c l i e n t
36 f o r (Entry<Integer , Integer> deg : r e s . entrySet ()) {
37 i n t degree = deg . getKey () ;
38 i n t f requency = deg . getValue () ;
39 i f (d i s t . containsKey (degree)) f requency += f u l l D i s t . get (deg) ;
40 d i s t . put (degree , f requency) ;
41 }
42 }
43 // p r i n t out the r e s u l t s :
44 St r ing d i s t r i b u t i o n = " d e g r e e − f r e q u e n c y p a i r s : " ;
45 f o r (Entry<Integer , Integer> deg : f u l l D i s t . entrySet ()) {
46 d i s t r i b u t i o n += " (" + deg . getKey () + "−" ;
47 d i s t r i b u t i o n += deg . getValue () + ") " ;
48 }
49 l ogg e r . l og (d i s t r i bu t i o n , LogType .DEFAULT, t h i s) ;
50

28

5.2. Using the distributed graph database

51 // t h i s was the l a s t job , we w i l l not run any other
52 pluginManager . p lug inF in i shed () ;
53 break ;
54
55 d e f au l t :
56 l o gg e r . l og (" i n v a l i d s t a t e i n p l u g − i n m a n a g e r o b j e c t " ,
57 LogType .ERROR, t h i s) ;
58 }
59 }
60 }

When all the clients finished their jobs, the runNextJob method is also called. This time
the actJobId will be not NO_JOB, so the plug-in manager recognizes the first job is finished.
It can get the results of the last job in the array named lastResults. The type of this
array is Serializable[], and it has as many elements as the number of clients in this
project. If one of the clients was not working on the last project or did not send back any
result object, their results will be set as null in the array. The number of clients and their
IDs are constant during a project.

If the plug-in manager decides there is no more job to run, it must call the pluginFinished
method of the plug-in scheduler service, as can be seen in line 52.

5.2 Using the distributed graph database

The data objects of the distributed graph database can be reached from the client side
plug-ins, more precisely from the distributed job objects. The server side plug-in manager
objects can not reach the distributed database, they can get graph related information
only trough the response objects of the jobs.

In the job objects, the current view of the distributed graph structure can be seen in the
network variable. Figure 5.1. shows the class diagram of graph related interfaces can be
used by the plug-in developers.

There are three kind of graph related data structure in the distributed graph database: the
Node, the Edge and the Module objects. All of them extends the DatabaseEntry object,
which contains some common functions, giving back the unique ID of the database object,
the ID of the owner client responsible for the object and some distributed property getter
and setter. In every database object, numerous property can be stored (for example the
name of the object in string property, some measurements in float or integer properties,
etc.). Each property has a string identifier, called type. The property with the given type
is created when the first set (or increase) method is called for the given type. There is a
special float property named cumulatedFloatProperty which can not be set, but increased
all the time. In the merge phases when a distributed DatabaseEntry object is committed
to its owner, all the non-local property will be overridden except the cumulated ones. In
case of cumulated properties the changes are merged instead of the exact values. Currently
only cumulated float properties exist.

There are relations between the three types of database objects. From the nodes, the
connected edges (or the nodes connected trough them) can be listed, while from the edges,
the starting and ending nodes can be reached (or the edges connected trough them). Both
the nodes and edges can belong to modules with float strength values, and these belonging
properties can be reached from all objects.

29

5. Developing ParaGrAPH plug-ins

Figure 5.1: The UML class diagram of graph db object interfaces.

The DatabaseEntry objects can be reached from the Network object, which is responsible
for managing the sets of local and known nodes, edges and modules. For example if we
have a local edge object which have a local start node and a non-local end node, then the
reference of the end node will be stored in the known node list. When the plug-in runs
something on the non-local object in the first time, the database will request the current
version of this new node object from its owner client. It is possible, when the other client
sends this object, the local client will notice some new non-local edge references connecting
to this new node. These new edge references will be added to the known edges list too.

The Network object is responsible for creating the DatabaseEntry objects by their unique
ID with the getOrCreate... and without the unique ID by the addNewLocal... methods.
The deletion of the DatabaseEntry objects and the assignment between modules and nodes
or links are also made by the Network object.

30

5.3. Creating and restoring backups

5.3 Creating and restoring backups

In the following example will be shown, how to override the default backup creation and
restore behavior in order to minimize the lost of computation time in case of an error. The
appearance of this situation on the GUI can be seen in the screenshots of Appendix A.1
where the linkland plug-in was interrupted and restored.

The next distributed job sums the weights of the connected edges for each node of the
network and stores it as a float property in each node.

1 package hu . l inkgroup . paragraph . p lug in . g ene ra l ;
2
3 import java . i o . IOException ;
4 import java . i o . ObjectInputStream ;
5 import java . i o . ObjectOutputStream ;
6 import java . u t i l . ArrayList ;
7
8 import hu . l inkgroup . paragraph . graphdb . i n t e r f a c e s . Edge ;
9 import hu . l inkgroup . paragraph . graphdb . i n t e r f a c e s . Node ;

10 import hu . l inkgroup . paragraph . p lug in . Distr ibutedJobBase ;
11 import hu . l inkgroup . paragraph . s e r v i c e s . l o gg e r . Logger . LogType ;
12
13 pub l i c c l a s s SumConnectedEdges extends Distr ibutedJobBase {
14
15 ArrayList<Node> remainingNodes = nu l l ;
16 pub l i c s t a t i c S t r ing SUM_WEIGHT = " p a r am_sumWe i g h t " ;
17
18 @Override
19 pub l i c void runJob () {
20
21 i f (remainingNodes==nu l l)
22 remainingNodes = new ArrayList<Node>(network . getLocalNodes ()) ;
23 e l s e l o gg e r . l og ("BACKUP FOUND" , LogType .DEFAULT, t h i s) ;

Our main concept will be to maintain an array of node references, showing still which
nodes need to be deal with. This will be the remainingNodes variable. In the beginning
of the algorithm, we initialize this array to contain all of the local nodes. When we are
creating a backup, we write out this array. So if any error happens and we restore the last
backup, the database will be restored with our previous calculations and we will know the
list of the remaining nodes.

24 i n t i = 1 ;
25 whi l e (remainingNodes . s i z e () > 0) {
26 // c r e a t i n g backups in every 200 rounds
27 i f (i % 200 == 0) createBackup () ;
28
29 Node actNode = remainingNodes . remove (0) ;
30 i++;
31
32 f l o a t sum = 0 ;
33 f o r (Edge e : actNode . getConnectedEdges ())
34 sum += e . getWeight () ;
35 actNode . s e tF loatProper ty (SUM_WEIGHT, sum) ;
36 }
37 createBackup () ; // c r e a t e s a l a s t backup
38 myAlg . j obFin i shed (nu l l) ; //no r e s u l t ob j e c t
39 }

31

5. Developing ParaGrAPH plug-ins

As can be seen above, we are creating a full backup after every two hundred nodes. An
other backup is created by the system automatically in the beginning of the job, right
before the runJob method would be called. We are creating an other one just in the very
end of the job. If the error happens after the current client finished its job but not started
the next one (for example during the merge phase), the system will be restored to this last
backup and practically make no calculation at all. In the next code part we can see the
overloaded backup creation function of the job class:

40 @Override
41 pub l i c void writeStateBackup (ObjectOutputStream oos)
42 throws IOException {
43 super . writeStateBackup (oos) ;
44 i f (remainingNodes == nu l l) oos . w r i t e In t (0) ;
45 e l s e {
46 oos . w r i t e In t (remainingNodes . s i z e ()) ;
47 f o r (Node n : remainingNodes) oos . w r i t e In t (n . ge t Id ()) ;
48 }
49 }

And the overloaded backup restoration class:
50 @Override
51 pub l i c void updateStateByBackup (ObjectInputStream o i s)
52 throws IOException , ClassNotFoundException {
53 super . updateStateByBackup (o i s) ;
54 remainingNodes = new ArrayList<Node>() ;
55 i n t s i z e = o i s . r eadInt () ;
56 f o r (i n t i =0; i<s i z e ; i++)
57 remainingNodes . add (network . getNode (o i s . r eadInt ())) ;
58 }
59 }

The node references are saved and restored by their unique IDs, which remain the same
even if the whole database was reloaded after an error.

32

Chapter 6

Performance

All the tests shown here were run in a computer laboratory at the Technical University
of Budapest. All the computers had similar hardware configuration with Windows Vista
host operating system, running one other Windows XP VMware image. Both the physical
and virtual machines were on the same 100Mbit LAN. For all the virtual machines, one
processor was allocated with 1024 MB of RAM.

From two to nine machines were used for the measurements. The server never run alone, but
always together with a client and the GUI on the same machine, and all other active clients
were run alone on separated computers. The run-time analysis was created by the statistics
type of log events made by the ParaGrAPH framework. These logs can be found in the log
files generated separately in case of each project on each machines. To help the analysis, I
wrote a new little java program to process these log files and convert their information to
csv format text files. This tool can be found beside the ParaGrAPH program.

6.1 Measured algorithms

For the measurements, the members of the ModuLand [14] algorithm family were used (see
Section 2.4 for overview, and Appendix A.2 the exact definition of the algorithms) with a
simple distributed test graph generator.

On Figure 6.1. you can see an example of the generated and clusterized test graph (the
screenshot was taken in the Pajek program [4]). Each cluster is marked with different
color, and the nodes are labeled with the ID of the cluster they belong at most. The gen-
erator has two parameters. Each client will create random number of local nodes between
minimumNodes and 2∗minimumNodes, and make all possible connections between them.
The interModuleRatio parameter determines the mean of the ratio of inter-component
and intra-component links. For example, if a given client made 11 local nodes, all given
local node will have 10 links to the others. And if the interModuleRatio is set to 0.4, then
the number of new links towards random nodes in other clients will be around 40% of its
local connections, 4 in this case. On Figure 6.1., there were six clients, theminimumNodes
was set to 15 and the interModuleRatio to 0.2. Every link created by the test graph gen-
erator has a random weight, a float value between 1 and 5. Of course in the future more
tests are needed with different test graph generation methods, or using real datasets and
networks.

Three members of the ModuLand algorithm family were chosen to implement as plug-ins to
create overlapping clusterization of the generated networks. The plug-in named LinkLand

33

6. Performance

Figure 6.1: An example network clusterized in ParaGrAPH.

is responsible for creating the first two steps of the ModuLand clusterization. It calculates
the local influence of each link to its neighborhood (Figure 2.1.A), and based on this
information it creates a centrality landscape by assigning a height value to each link and
node of the graph (Figure 2.1.B). The third step of the clusterization (Figure 2.1.C) is
achieved by two plug-ins named HillTopF inder and Proportional. The HillTopF inder
identifies the module centers as the local maxima on the landscape, while the Proportional
plug-in assigns every link and node to these modules with different strength.

The plug-in PajekExport is responsible for exporting the graph structure and the clus-
tering information to the text file format of the widely used Pajek1 program [4]. It creates
two files. One contains the topology of the network (the name of nodes and the parameters
of links), while the other on is for storing the clustering information (for each node the id
of the cluster it belongs at most).

6.2 Graph size

The first question was, how the increase of the graph affects the run-time of the LinkLand
plug-in. The plug-in has two jobs, the first one is calculating the centrality landscape, while
the second one is printing out the local height values for debugging purposes. We generated
random graphs in different sizes and measured the time needed for running the first job of
the LinkLand plug-in and the following merge phase together. In the merge phase happens
the commitment of the non-local distributed database objects and the initialization of the
local objects for the next job.

1 http://pajek.imfm.si/doku.php

34

http://pajek.imfm.si/doku.php

6.3. Scalability

Identifying the local influence of one link in the LinkLand algorithm is structurally similar
to a breadth-first search. This influence needs to be calculated in case of each link, therefore
the runtime complexity of the algorithm is O(e(n + e)), where n is the number of nodes
and e is the number of links in the network. To compare the results of the distributed
LinkLand plug-in in the ParaGrAPH framework and the standalone algorithm, as control
I used the highly optimized standalone program version, implemented in C language by the
professional developers of the LinkGroup research group (the program can be downloaded
from: http://linkgroup.hu/modules.php). Both programs were used in case of each gen-
erated network. In the Figure 6.2. can be seen the measured time values depending on the
number of links.

Figure 6.2: Run-time of ParaGrAPH and standalone version of LinkLand al-
gorithm, depending on the number of links.

As the diagram shows, the distributed LinkLand plug-in implemented in java gives better
performance in case of larger graphs than the optimized standalone C version. It is an
interesting question how the ParaGrAPH version behave in the small networks (see Figure
6.3.).

In case of small graphs with links less than 4000 the optimized standalone version gives
less run-time values. These graphs are really small ones and probably there is no need
for running the calculations on six machines over a distributed java framework in case of
problems solved around eight seconds on a single machine. However, it gives an opportunity
to compare the time spent on running the distributed job and on performing the distributed
database merge phase in ParaGrAPH. The sum of this two value gives the run-time of the
LinkLand plug-in. In the job phase happens the real calculation and the periodic backup
creation, while in the merge phase there is no useful calculation, only the sending of the
changes on non-local database objects to their owner clients (see Section 4.2). The later
is approximately the same 2.5 - 3 seconds during the whole time in case of these small
networks. According to the data, considering all the runs and not just the small networks,
the maximal run-time value of the merge phase is 4.328 seconds.

6.3 Scalability

In the previous section we checked how the increasing of the graph size affects the run-time
of the distributed LinkLand plug-in. Now the size is fixed and the number of client pro-

35

http://linkgroup.hu/modules.php

6. Performance

Figure 6.3: Run-time of ParaGrAPH and standalone version of LinkLand al-
gorithm in case of small networks.

grams running the calculation will be the variable. To avoid the algorithmic dependencies
of the given graph topology, I made several measurements on different random graphs.
During the tests, from two to nine machines worked on the LinkLand plug-in, in every
case with graphs having around 20000 links. All the tests were remade with the optimized
standalone implementation of the LinkLand algorithm.

Figure 6.4: Run-time of LinkLand plug-in depending on the number of clients.

As Figure 6.4. shows, in this network size the standalone C implementation gives approx-
imately the same performance as the ParaGrAPH java plug-in implementation on two
hosts. If there are more than two clients running, the distributed system needs much less
time. For example three machines run for 350 seconds, six machines for 90 and nine ma-
chines for 76 seconds in average. During these tests only three runs were made in case of a
given client number and test graph generation algorithm has a weakness of making large
differences in the number of local edges. Some client could have much more local edges

36

6.4. Update strategies

than the others, while the sum of edges still remains the same. Because of the run-time of
the LinkLand job instance on a given client strongly depends on the number of its local
edges, it is possible these average results would slightly change after making a lot more
tests. However, the main characteristics of the diagram would still remain the same in case
of these client numbers. In the future, other measurements are planned on different test
graphs and graph sizes with other algorithms.

The scalability of the system is depending also on the memory usage. However, I was not
able to measure it in such a small graph scale. The memory usage of the JVM on clients
were below 40-50 MB even in case of a relatively large graphs and it contains the usage of
the distributed graph database view, the JADE and ParaGrAPH frameworks such as the
usage of the given plug-in. Of course the graph models of real life systems (such as a living
cell or a phone network) can be much larger and the plug-ins could need much more space,
so the memory usage measurement is still an important further task. It is also interesting
how the Java garbage collector affects the memory usage in case of different Java versions,
because for example if a new project is started on the GUI, basically all objects in the
ParaGrAPH clients are recreated.

6.4 Update strategies

There is two kind of update mechanism of non-local graph database objects in the Para-
GrAPH framework (see Section 4.2), can be chosen on the GUI in case of each plug-in. One
method is when the update happens on each object. In this case the framework detects
if the plug-in wants to read or modify a non-local database object out of date and stops
the thread of the job to get the current version. The other method is to update all the
database objects in some large query before the job even starts to run. The first mechanism
minimizes the number of the required data objects, but can lead to a lot of time loss when
the job just waits for the information. The second mechanism creates much more traffic
at once in the beginning of each job and can cause a lot of unnecessary data moving, but
without the drawback of waiting for data during the job. My experiences show the second
way is usually much better, except in cases when the job works only on local objects.

Figure 6.5: Comparing update strategies in case of a global job (first job of
the LinkLand plug-in).

37

6. Performance

Figure 6.6: Comparing update strategies in case of a semi-local job (second
job of the HillTopF inder plug-in).

On Figure 6.5. can be seen the comparison of the two methods in case of a job which
uses almost the entire graph. In our test graphs the diameter (the maximum length of the
shortest paths between any given two nodes) can not be more than three, since the graph
contains full subgraphs connected to each other. The first job of the LinkLand plug-in
was chosen to test the global behavior, because in our specific graphs it usually requires
some information on the great majority of the network (in real-life networks the LinkLand
algorithm behaves much more locally). The diagram shows that in case of this global job,
the mechanism updates on every single object is always worse than the one updates the
entire network.

There are jobs working basically on local objects and on all of their neighbors in the
graph. On Figure 6.6. the second job of the HillTopF inder plug-in was tested, which is
responsible for deciding in case of each local link if it has or has not a neighbor with more
height value on the centrality landscape. In case of these semi-local jobs the single object
update is closer to the other one, but still the second update mechanism is better.

Figure 6.7: Comparing update strategies in case of a local job (first job of the
DegreeDistribution plug-in).

38

6.4. Update strategies

Then the first and only job of the DegreeDistribution plug-in was tested. This job was
an example in Section 5.1, which operates only on local object. The results can be seen
on Figure 6.6.: in this case the job does not need update at all and of course the method
which updates the whole network will take more time now.

39

6. Performance

40

Chapter 7

Evaluation and Conclusion

The original goal was to create a distributed graph clustering engine, to help the scientists of
the field to implement and compare their algorithms easier. The Parallel Graph Algorithm
Framework fulfilled this task. The most of the commonly used clustering and benchmarking
methods can be realized as ParaGrAPH plug-ins, and in case of parallelizable algorithms
the framework gives a scalable distributive environment. The plug-in API1 offers many
useful services to the plug-in developers, helping the implementation of graph clustering
algorithms.

However, the ParaGrAPH framework is not only capable of running graph clustering algo-
rithms, but any kind of parallel methods created for analyzing large graphs. It gives us the
opportunity for creating an open source project, a framework potentially used by a large
number of scientist modelling complex systems with graphs. This leads to higher level of
challenges, because the ParaGrAPH framework must be enhanced with new services and
more user friendly graphical and programming interfaces to achieve this goal. Personally I
hope this framework can became a professional and well known tool for scientists and will
assist to prove or question many theories about complex systems.

7.1 Further improvements

During the development of the current version of the Parallel Graph Algorithm Framework,
a lot of idea came up as possible further enhancement. In the near future the framework
will be uploaded to the SourceForge2 open source project library and hopefully reach some
attention from users and developers as well. In the following lists some of the possible
changes and potential new functionalities are gathered.

ParaGrAPH development related ideas:

• Some unit test mechanism and formal validation of state machines and message
protocols would be highly needed even now, and essential if the project become
larger and more complex.

• Longer tests (running days) on larger graphs should be made to estimate the practical
limits of the framework, for example investigte the memory usage.

1 Application Programming Interface
2 http://sourceforge.net

41

http://sourceforge.net

7. Evaluation and Conclusion

GUI related ideas:

• The GUI needs to be more user friendly, and enriched with many new functionalities.

• It would be useful to have other management interfaces as well (like command line
interface or file interface to read projects based on XML descriptors) especially for
supporting massive number of runnings. Thanks to the layer structure of the current
GUI, this can be easily achieved.

• The ParaGrAPH could support the development of plug-in specific GUI modules.

• The ParaGrAPH should give a new interface to the plug-ins to show their progress
and status on the GUI.

Distribution and availability related ideas:

• The compatibility with the current JADE version 4.0 (released on 04/20/2010) would
be important. It is also possible, the new version makes easier some other enhance-
ment of ParaGrAPH.

• For increase the reliability of ParaGrAPH, some advanced JADE techniques or other
non-JADE solutions need to be considered.

• Since some of the graph algorithms demand huge computing capacity, it would be
important to help the plug-in developers to reach advanced and optimized third party
programs (like R or MathLab), and even give the support to run the ParaGrAPH on
GPU environment.

• In some cases when the algorithm is operating on local graph parts it could be
important to create a database distribution optimization to ensure the given client
is not responsible for a random set of nodes and links, but a locally connected region
of the graph. It could minimize the number of updated and committed database
objects.

• The framework should support the creation of Amazon Machine Image contains the
whole ParaGrAPH system together with the input files and plug-ins defined by the
user. The created image could be deployed on Amazon Elastic Compute Cloud3 in
as many copies as many are optimal for the distributed computing.

• The parameter of the maximal number of clients can be used in a plug-in should be
freely changeable on the GUI. (now it is a static integer variable set to 20)

Plug-in related ideas:

• It would be important to implement benchmarking algorithms to help the comparison
of different graph clustering algorithms.

• New I/O plug-ins are needed to support the import and export in well known graph
data formats (like CSV, XLS or the specific data formats used in Pajek or Citoscape
programs).

3 Amason EC2: http://aws.amazon.com/ec2

42

7.1. Further improvements

• The ParaGrAPH graph API interface should be enriched with functions to handle
directed links, hyper-graphs and other graph structures.

• The versioning of different plug-ins would also be important.

• The distributed graph database should be capable to store not only one, but many
graphs at one time.

• A new functionality in the plug-in service would be to create a plug-in distribution
solution to upload the plug-ins on the GUI and spread it to the whole system.

• More detailed tutorials and examples should be made about plug-in development.
And more, commonly used graph algorithms should be created.

• A basic unit test should be run with simple test graphs on the uploaded plug-ins and
plug-in management objects to find the most simple errors (or even security threats).

• An online storage of ParaGrAPH plug-ins should be developed where the plug-in
developers could share their new plug-ins.

43

7. Evaluation and Conclusion

44

Acknowledgements

Acknowledgements

I would like to thank András Kövi, my supervisor at the Department of Measurement
and Information Systems of Budapest University of Technology and Economics, for the
guidance during the project. I also received a lot of help from the LinkGroup research
group. Especially I would like to thank professor Péter Csermely, the leader of the group,
István Kovács, who worked out the idea of the original ModuLand method family [14], and
Robin Palotai and Gábor Szuromi who helped in its implementation. I also would like to
thank Melinda Bekő the final extensive linguistic review of this thesis.

45

46

Appendix

Appendix

A.1 Using ParaGrAPH

The source code, the binary version and all the required library can be found in the project
directory (enclosed to the thesis on CD). The following list shows the description of the
main files and directories:

• paragraph/src: source code of ParaGrAPH system

• paragraph/bin: binary class files of ParaGrAPH system

• paragraph/lib: required libraries in jar files (all contained jar file get into the classpath
by ant)

• paragraph/doc: documentation (currently this thesis)

• paragraph/paragraph.jar : the jar file built by ant contains the class files of the bin
directory

• paragraph/build.xml : ant xml file defines the ant targets

One may want to run more than one client on a single machine. Since the backup files have
the same name in case of all clients, it is a good practice to create different directories for
each client running locally and copy the ParaGrAPH to each of them.

The paragraph.jar can be created by the ant dist command, and the server can be
started with the ant run_server command, generating the following console output:
B u i l d f i l e : bu i ld . xml

i n i t :

run_server :
[java] May 8 , 2010 12 : 09 : 35 PM jade . core . Runtime beginConta iner
[java] INFO: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[java] This i s JADE 3.7 − r e v i s i o n 6154 o f 2009/07/01 17 : 34 : 15
[java] downloaded in Open Source , under LGPL r e s t r i c t i o n s ,
[java] at http : // jade . t i l a b . com/
[java] −−
[java] May 8 , 2010 12 : 09 : 36 PM jade . core . BaseServ ice i n i t
[java] INFO: Se rv i c e jade . core . management . AgentManagement

i n i t i a l i z e d
[java] May 8 , 2010 12 : 09 : 36 PM jade . core . BaseServ ice i n i t
[java] INFO: Se rv i c e jade . core . messaging . Messaging i n i t i a l i z e d

47

[java] May 8 , 2010 12 : 09 : 36 PM jade . core . BaseServ ice i n i t
[java] INFO: Se rv i c e jade . core . mob i l i ty . AgentMobil ity i n i t i a l i z e d
[java] May 8 , 2010 12 : 09 : 36 PM jade . core . BaseServ ice i n i t
[java] INFO: Se rv i c e jade . core . event . No t i f i c a t i o n i n i t i a l i z e d
[java] May 8 , 2010 12 : 09 : 36 PM jade . core . messaging .

Messag ingServ ice c l e a rCachedS l i c e
[java] INFO: Clear ing cache
[java] May 8 , 2010 12 : 09 : 36 PM jade .mtp . http . HTTPServer <i n i t >
[java] INFO: HTTP−MTP Using XML par se r com . sun . org . apache . x e r c e s .

i n t e r n a l . jaxp . SAXParserImpl$JAXPSAXParser
[java] May 8 , 2010 12 : 09 : 36 PM jade . core . messaging .

Messag ingServ ice boot
[java] INFO: MTP addre s s e s :
[java] http : // gondor :7778/ acc
[java] May 8 , 2010 12 : 09 : 36 PM jade . core . AgentContainerImpl

jo inP la t fo rm
[java] INFO: −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[java] Agent conta ine r Main−Container@gondor i s ready .
[java] −−
[java] [CLASS] : hu . l inkgroup . paragraph . c on t r o l . ControlServerAgent
[java] [AGENT] : s e r v e r
[java] [TYPE] : DEBUG LOG
[java] [DATE] : Sat May 08 12 : 09 : 36 CEST 2010 (1273313376447)
[java] [TEXT] : Control s e r v i c e s tar ted , s e r v e r i s running
[java]

The command ant run_manager starts the GUI. If the server is not running on the local
machine, its host name and port must be defined. For the usage please see the ant help.
On the Figure A.1. can be seen the GUI.

Figure A.1: Connecting to the ParaGrAPH server.

With the connect button we can connect to the ParaGrAPH management service. The
new project creates a new empty project, while the restore bckp rolls back the system
to the last saved state. The disconnect button disconnects the GUI from the server. The
close button is shutting down every client and server programs.

48

A.1. Using ParaGrAPH

The run plugin sends the request of running new plug-in to the server. The parameters
can be written to the empty field next to the button. The <parameter name>:<value>
pairs are separated by commas. The two mandatory parameters are the pluginName and
packagePrefix. To simplify the tests, five buttons were created to fill out this parameter
line. However, much more user friendly solution is needed in the future to run different
plug-ins.

There are three checkboxes in the bottom of the window. Here can be altered the log level
of the project and the update mechanism used during the given plug-in. If the later is
selected, than a new parameter named updateNetwork with value true will be inserted to
the parameter line, if a plug-in button is pressed. This parameter needs to be given if the
network based update mechanism is wanted by the user.

Figure A.2: Running linkland plug-in.

Figure A.3: Restoring linkland plug-in.

Figures A.2. and A.3. show the situation, when an error happens during the linkland
plug-in and the system needs to be restored from the last backup. In case of a problem

49

(for example exception during the running of the plug-in) the system needs to be restarted
manually and by the button restore bckp, the framework restores its state, and continues
the running of the last plug-in, as can be seen on Figure A.3..

The developer of a new plug-in needs to ensure, his plug-in related classes are in the
classpath on each JVM. It can be done for example if he copies his java files to the package
hierarcy in the src directory, or creates a new jar file in the lib folder. At least two
classes are needed, one plug-in class on client side and one plug-in manager class on server
side. In both cases the two classes need to be in the same package somewhere inside the
hu.linkgroup.paragraph.plugin.

A.2 Implemented members of the ModuLand algorithm family

The brief descriptions of the main steps of the ModuLand method family can be found
in Section 2.4. Here we describe the two algorithms were developed as a distributed Para-
GrAPH plug-in. The following two sections are copyed from the supplementary discussions
of article [14].

A.2.1 LinkLand centrality landscape calculation

The LinkLand method is a fast, but approximating method for the determination of the
community heaps in weighted, undirected networks. Here the community heap belonging to
the starting element or link is determined by a network walk. The starting link (and later
its growing community heap) is extended by those neighboring elements and their links
linking them to the existing community heap and also to each other, which will at least not
decrease the community heap-threshold of the existing community heap; the community
heap is ready once such extension is no longer possible. The community heap-threshold of
the LinkLand method is defined as the summarized weight of the links in the community
heap divided by the number of nodes in the heap.

The following pseudo code shows how the LinkLand community heap construction method
selects the members of the community heap in case of a given starting link of the network.
The definition of the important variables used in the algorithm:

• startLink: the starting link of the actual community heap.

• heapNodeList: elements of the community heap (initially empty).

• heapLinkList: links of the community heap (initially empty).

• tempList: elements to be added to the community heap in the next round.

• actualHeapThreshold: sum of the weight of all links in heapLinkList divided by the
number of elements in heapNodeList.

The pseudo code of LinkLand algorithm:

c l e a r tempList
add the two end−e lements o f s t a r tL ink to tempList
while tempList i s not empty {

50

A.2. Implemented members of the ModuLand algorithm family

add a l l e lements o f tempList to heapNodeList .
for each l i n k e connected to any elements o f tempList {

i f endpoints o f e are a l r eady in heapNodeList {
add e to heapLinkList

}
}

c l e a r tempList
r e c a l c u l a t e actualHeapThreshold
maxNewHeapThreshold := actualHeapThreshold

for each each element n not in heapNodeList but having non−zero
l i n k s l k s . with an endpoint in heapNodeList {

newHeapThreshold := sum of the weight o f a l l l i n k s in
heapLinkList + sum weight o f l i n k in l k s

newHeapThreshold := newHeapThreshold / (number o f e lements in
heapNodeList + 1)

i f newHeapThreshold > maxNewHeapThreshold {
c l e a r tempList
maxNewHeapThreshold := newHeapThreshold

}
i f newHeapThreshold = maxNewHeapThreshold {

add n to tempList
}

}
}

In the end of the LinkLand algorithm we find the links and elements of the community
heap in the heapLinkList and heapNodeList, respectively. Identifying the community heap
of one link in the LinkLand algorithm is structurally similar to a breadth-first search,
therefore the runtime complexity of the algorithm is O(e(n + e)), where n is the number
of nodes and e is the number of links in the network. However in practice the algorithm is
very fast as a community heap of any given link rarely covers the whole network.

A.2.2 Proportional module assignement method

In the Proportional module membership assignment method links of the network are as-
signed to modules of their non-lower neighboring links in the proportion of the absolute
community landscape height of the respective neighboring links. The links having no higher
neighboring link are assigned with full height to the respective modules defined by them-
selves.

At the start of the Proportional module membership assignment method all links are
marked as unassigned. After this, multiple rounds of link-assignments are performed: in
each round, links are assigned to modules based on the assignment of previously assigned
links. In each round, we descend to next slice of links, starting from the top community
landscape slice, where a community landscape slice is formed by all links having the same
community landscape height.

Here we describe the steps of a single round of the Proportional module membership
assignment method:

• The first step: each of the hill-tops/highlands of the community landscape (connected
components of the actual community landscape slice without higher neighboring

51

links) becomes a new module-core. Each link of all these connected components is
assigned to its respective new module with an assignment-strength of its full com-
munity landscape height.

• In consecutive steps, unassigned links of the community landscape slice having at
least one neighboring link already assigned to the growing modules, are assigned to
modules proportional to the assignment-strength of their neighbors already assigned
to existing modules. In such a step, links assigned in the current step are not con-
sidered as ‘assigned neighbors’ during the respective step. The step described here
is repeated until there are any unassigned links remaining in the actual community
landscape slice. Once all links of the actual community landscape slice have already
been assigned to modules, the round is over and the next round begins, unless there
are no more (lower) community landscape slices left, in which case the whole assign-
ment procedure ends.

As an outcome of the Proportional module membership assignment process, for each link
the sum of the assignment-strength values of the given link to the different modules is
equal to the community landscape height of that link.

The runtime complexity of the Proportional module membership assignment method is
O(edm), where e is the number of links of the network, d is the average degree of nodes
and m is the number of modules. Assuming practically that the average degree is bounded
by a constant and that the number of modules is not more than the number of nodes, the
runtime complexity is O(n3).

52

Bibliography

Bibliography

[1] G. Agarwal and D. Kempe. Modularity-maximizing network communities via math-
ematical programming. Eur. Phys. J. B, 66:409–418, 2008.

[2] R. D. Alba. A graph-theoretic definition of a sociometric clique. Journal of Mathe-
matical Sociology, 3:113–126, 1973.

[3] R. D. Alba and G. Moore. Elite social circles. Sociol. Meth. Res., pages 167–188,
1978.

[4] V. Batagelj and A. Mrvar. Pajek - analysis and visualization of large networks. In
M. Junger and P. Mutzel, editors, Graph Drawing Software, pages 77–103. Springer,
Berlin, 2003.

[5] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A. Phillips. Tolerating the
community detection resolution limit with edge weighting. ArXiv e-prints, 0903.1072,
mar 2009.

[6] S. P. Borgatti, M. G. Everett, and P. R. Shirey. Ls sets, lambda sets and other cohesive
subsets. Social Networks, 12:337–358, 1990.

[7] G. W. Flake, S. Lawrence, L. Giles, and F. M. Coetze. Self-organization and identifi-
cation of web-communities. IEEE Computer, 35:66–71, 2002.

[8] S. Fortunato. Community detection in graphs. Phys. Rep., 486:75–174, 2010.

[9] S. Fortunato and C. Castellano. Community structure in graphs. ArXiv e-prints,
0712.2716, dec 2007.

[10] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection.
Proc. Natl. Acad. Sci. USA, 104:36–41, 2007.

[11] M Girvan and M. E. J. Newman. Community structure in social and biological net-
works. Proc Natl Acad Sci USA, 99(12):7821–6, 2002.

[12] Roger Guimerà and Luís A. Nunes Amaral. Functional cartography of complex
metabolic networks. Nature, 433(7028):895–900, Feb 2005.

[13] M. Kitsak, M. Riccaboni, S. Havlin, F. Pammolli, and H. E. Stanley. Structure of
business firm networks and scale-free models. ArXiv e-prints, 0810.5514, oct 2008.

[14] István A. Kovács, R. Palotai, Máté S. Szalay, and Péter Csermely. Community land-
scapes: an integrative approach to determine overlapping network module hierarchy,
identify key nodes and predict network dynamics. ArXiv e-prints, 0912.0161, 2009.

53

Bibliography

[15] J. M. Kumpula, J. Saramäki, K. Kaski, and J. Kertész. Limited resolution in complex
network community detection with potts model approach. Eur. Phys. J. B, 56:41–45,
2007.

[16] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing com-
munity detection algorithms. Physical Review E, 78(4):46110, 2008.

[17] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detec-
tion algorithms on directed and weighted graphs with overlapping communities. Phys.
Rev. E, 80(1):016118, Jul 2009.

[18] S. Lehmann, M. Schwartz, and L. K. Hansen. Deterministic modularity optimization.
Eur. Phys. J. B, 60:83–88, 2007.

[19] E. A. Leicht, P. Holme, and M. E. J. Newman. Modularity-maximizing network
communities via mathematical programming. Phys. Rev. E, 73:026120, 2006.

[20] R. D. Luce. Connectivity and generalized cliques in sociometric group structure.
Psychometrika, 15:169–190, 1950.

[21] C. P. Massen and J. P. K. Doye. Identifying communities within energy landscapes.
Phys. Rev. E, 71:046101, 2005.

[22] D. W. Matula. K-components, clusters and slicings in graphs. SIAM J. Appl. Math.,
22:459–480, 1972.

[23] Robert J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13(2):161–173,
April 1979.

[24] M. E. J. Newman. Detecting community structure in networks. The European Physical
Journal B, 38:321–330, 2004.

[25] M. E. J. Newman. Fast algorithm for detecting community structure in networks.
Phys. Rev. E, 69:066133, 2004.

[26] M. E. J. Newman. Detecting community structure in networks. Phys Rev E, 74, 2006.

[27] M. E. J. Newman and M. Girvan. Detecting community structure in networks. Phys.
Rev. E, 69:026113, 2004.

[28] Gergely Palla, Imre Derenyi, Illes Farkas, and Tamas Vicsek. Uncovering the over-
lapping community structure of complex networks in nature and society. Nature,
435(7043):814–818, June 2005.

[29] Béjar J. Pujol, J. M. and J. Delgado. Clustering algorithm for determining community
structure in large networks. Phys. Rev. E, 74:016107, 2006.

[30] M. Rosvall and C. T. Bergstom. An information-theoretic framework for resolving
community structure in complex networks. Proc. Natl. Acad. Sci. USA, 104:7327–
7331, 2007.

[31] M. Rosvall and C. T. Bergstom. Maps of random walks reveal community structure
in complex networks. Proc. Natl. Acad. Sci. USA, 105:1118–1123, 2008.

[32] P. Schuetz and A. Caflish. Efficient modularity optimization: multi-step greedy algo-
rithm and vertex mover refinement. Phys. Rev. E, 77:046112, 2008.

54

[33] Stephen B. Seidman. Network structure and minimum degree. Social Networks, 5:269–
287, 1983.

[34] Stephen B. Seidman and Brian L. Foster. A graph-theoretic generalization of the
clique concept. Journal of Mathematical Sociology, 6:139–154, 1978.

[35] G. Tibély and J. Kertész. On the equivalence of the label propagation method on
community detection and a potts model approach. Physica A, 387:4982–4984, 2008.

[36] Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Ap-
plications. Cambridge University Press, 1994.

55

	Abstract
	Contents
	Introduction
	Parallel Graph Algorithm Framework (ParaGrAPH)

	Graph clustering
	Local module definitions
	Global module definitions
	Other module definitions
	ModuLand clustering method family

	Architecture
	Common layer structure
	ParaGrAPH server
	ParaGrAPH client
	ParaGrAPH GUI

	Implementation
	Java Agent Developement Framework
	Plug-in and data distribution
	Life-cycle management
	Messaging between components
	Availability

	Developing ParaGrAPH plug-ins
	Simple example: degree distribution
	Using the distributed graph database
	Creating and restoring backups

	Performance
	Measured algorithms
	Graph size
	Scalability
	Update strategies

	Evaluation and Conclusion
	Further improvements

	Acknowledgements
	Appendix
	Using ParaGrAPH
	Implemented members of the ModuLand algorithm family
	LinkLand centrality landscape calculation
	Proportional module assignement method

	Bibliography

