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Protein–protein interaction networks are useful for studying human diseases and to look for possible health care
through a holistic approach. Networks are playing an increasing and important role in the understanding of
physiological processes such as homeostasis, signaling, spatial and temporal organizations, and pathological con-
ditions. In this article we show the complex system of interactions determined by human Sirtuins (Sirt) largely
involved inmanymetabolic processes aswell as in different diseases. The Sirtuin family consists of seven homol-
ogous Sirt-s having structurally similar cores but different terminal segments, being rather variable in length
and/or intrinsically disordered. Many studies have determined their cellular location as well as biological func-
tions although molecular mechanisms through which they act are actually little known therefore, the aim of
this work was to define, explore and understand the Sirtuin-related human interactome. As a first step, we
have integrated the experimentally determined protein–protein interactions of the Sirtuin-family as well
as their first and second neighbors to a Sirtuin-related sub-interactome. Our data showed that the second-
neighbor network of Sirtuins encompasses 25% of the entire human interactome, and exhibits a scale-free degree
distribution and interconnectedness among top degree nodes. Moreover, the Sirtuin sub interactome showed a
modular structure around the core comprising mixed functions. Finally, we extracted from the Sirtuin
sub-interactome subnets related to cancer, aging and post-translational modifications for information on key
nodes and topological space of the subnets in the Sirt family network.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Networks are emerging as valuable prototypes in simplifying com-
plexity related to biological, social and physical sciences. Recently,
some studies about the representation of complex biological systems
as networks have provided key features on their structures, dynamics
and functions [1–4]. In particular, many papers [5–11] were pub-
lished for predicting protein–protein interactions or using protein–
protein interaction network information to study important problems
in molecular cellular biology and systems biomedicine. In fact, the
network science has developed novel paradigms including scale-free
networks, small world structure and modular organization. In partic-
ular, centrality measures are useful to determine the node impor-
tance in the networks, whereas the scale-free structure indicates
robustness against random failures. Modular organization is useful
to separate different functions and to regulate the information trans-
mission rate. Moreover, well-connected hubs are of high functional
importance for maintaining the global network structure and com-
munication. Some essential laws and principles govern networks
which make them useful for a deeper comprehension of biological
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organization, which is explained in terms of logical, informational
processes and structures [12–15].

The human Sirtuin (Sirt) family is involved in many biochemical
processes, as well as their pathological changes. This family is com-
posed of seven homologous proteins having structurally similar
cores, which are extended by terminal segments being rather variable
in length and having intrinsically disordered regions. Sirt-1 has the
highest degree of structural disorder as demonstrated recently [16].
The seven Sirts have different cellular distribution and biological
functions [17]. Sirt-1 is defined as a nuclear protein involved in in-
flammation and neuro-degeneration processes deacetylating PGC-α
(peroxisome proliferator-activated receptor gamma co-activator
1-alpha), FOXOs (forkhead box transcription factors), NFκB (nuclear
factor kappa-light-chain-enhancer of activated B cells) and other nu-
clear substrates. Recent studies suggest the nucleo-cytoplasmic shut-
tling of Sirt-1 upon oxidative stress [18,19]. Sirt-2 is generally
localized in the cytoplasm, and is involved in cell cycle and tumori-
genesis [20]. Sirt-3 has a mitochondrial protein and a nuclear localiza-
tion, but it is transferred to mitochondria during cellular stress [21].
Sirt-4 and Sirt-5 are mitochondrial proteins with different functions.
Sirt-4 is an ADP-ribosyl-transferase enzyme [22], which acts on
GDH (glutamate dehydrogenase) to control the insulin secretion in
the mitochondrial matrix [23] and Sirt-5 is a deacetylase which acti-
vates CPS1 (carbamoyl-phosphate synthase 1) and contributes to
the regulation of blood ammonia levels during prolonged fasting
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[24]. Sirt-6 and Sirt-7 are nuclear proteins associated with hetero-
chromatic regions and nucleoli, respectively [25,26]. Sirt-6 controls
DNA repair, and has an ADP-ribosyl transferase activity [25], while
Sirt-7 is involved in rDNA transcription acting on RNA polymerase I
[26]. While there is substantial knowledge of the biological functions
of human Sirtuins, we know much less of the molecular mechanisms
through which they act within the metabolic network. In fact, com-
plex biological systems often have less experimental access so that
determining the key nodes and variables is of importance to gather
information on the state of the whole complex system [27].

The aim of this work was to explore the interaction pattern and
key nodes of Sirtuins and their first and second neighbors in the
human protein–protein interaction network. We uncovered interac-
tion between top degree proteins (hub proteins) of the human Sirtuin
sub-interactome. Modular analysis of the Sirtuin-interactome showed
a functional segregation of Sirtuin-interaction partners.

2. Methods

A human protein–protein interaction map, was collected from
public databases like BioGrid, HPRD, MINT, and Pathway Interaction
Database, which are curated from high-throughput datasets, as well
as from individual experimental studies on interactions [28–31]
(see Fig. S1). This dataset was manually curated and updated by Cen-
ter for Bio-Medical Computing (CBMC) at the University of Verona,
Italy [12]. We extracted the sub-network of human protein–protein
interactions containing the first and second degree experimentally
determined neighbors of the Sirtuin family comprising 5876 nodes
and 243,365 interactions among them. Cytoscape software [32] was
used as a visualization tool using the Kamada–Kawai algorithm.

Net analyzer [2,33] and Centiscape plug-in [12]were used to calculate
the centralities of the protein–protein interaction network [34,35]. A de-
tailed explanation of these parameters is reported belowand inAppendix
S1 in the Supplementary Material. The analysis of the interactome was
performed by determination of the following parameters:

2.1. Node degree distribution

Degree is a commonly used measure to reflect the local connectiv-
ity of a node in a sample and indicates the number of connections to
other nodes. The related degree distribution is the probability distri-
bution of these degrees over the whole network. The nodes that had
larger connections than others were defined as “hub”.

2.2. Clustering coefficient

The clustering coefficient of a node i is given by proportions of
links (interactions) between the neighboring nodes divided by maxi-
mum possible connection with neighborhood. In other words it can
also be stated as measure of degree to which nodes in a graph tend
to cluster together and is a local measure that quantifies how close
its neighbors are to being a clique.

2.3. Shortest path length

Shortest path length is defined as the shortest possible path (dis-
tance) between two nodes in a network and shortest paths between
all pairs of nodes were identified using Dijkstra's algorithm.

2.4. Average path length

Average path length is defined as the average of hops along the
shortest paths for all pairs of nodes. It calculates the measure of effi-
ciency of information. Average path length is one of the most robust
measures of topology of networks. Most real world networks exhibit
very short average path length which states the small world concept
of the networks.

2.5. Network diameter

It is defined as the longest shortest path length (maximum length
of shortest paths) between two nodes in whole network. Diameter
can be simply detected after the calculation of shortest path lengths
from every node to all other nodes and the longest of all calculated
shortest path length is the diameter. It gives the size of the network.

2.6. Betweenness centrality

Betweenness centrality is an important global centrality measure
in the study of networks which measures the load placed on the
given node in the network. In simple words it provides information
about the core skeleton of the network and suggests that the node's
importance to the network is more than just connectivity. The be-
tweenness centrality of node i is defined as the sum of the fraction
of shortest paths between all pairs of nodes that traverse through
node i. Hence the more occurrence nodes on the shortest paths be-
tween other nodes of network show higher betweenness centrality.

2.7. Closeness centrality

Closeness is a global centrality metric used to determine critical
nodes in networks and is defined as the inverse of farness, which in
turn, is the sum of distances to all other nodes. Closeness centrality
provides information on a measure of how fast it will take to spread
information from one particular node. The closeness of node i is de-
fined as the inverse of the average path length (shortest path) from
node i to all other nodes in the network. This measure is not suited
for networks which have disconnected component as the distance be-
tween the nodes is infinite in this case.

Przulj et al. [36] and Yu et al. [37] demonstrated the importance of
bottlenecks in protein–protein interaction networks and their correla-
tion with gene essentiality. Lin et al. [38] proposed the algorithmsMax-
imum Neighborhood Component (MNC) and Density of Maximum
Neighborhood Component (DMNC) for retrieving essential, hub-like
proteins from protein–protein interaction networks [38–40]. Besides
thesemeasureswe utilizedMaximal Clique Centrality (MCC), Edge Per-
colated Component (EPC), betweenness centrality, stress and node de-
gree distribution measure for exploring potentially important nodes of
Sirtuin-interaction maps. Clustering pattern of network is calculated
with a k cutoff value equal to 2 detects densely interconnected regions
having a tendency to formmolecular complexes in the human Sirt net-
work [41]. Modular analysis of protein–protein interaction networks
[42] was performed using the ModuLand framework which uses the
NodeLand influence function calculation algorithm with the Propor-
tional Hill module membership assignment method [43]. Overlapping
modules in protein–protein interaction networks [42] along with as-
signment of communities and centralities of the networks were
detected by ModuLand framework [43]. ModuLand frame work takes
into account algorithms based on local maxima based Gradient Hill
method for module determination approach using a calculation func-
tion based on LinkLand algorithm.

The “rich-club” phenomenon refers to the tendency of nodes with
high centrality, especially when the nodes tend to connect among
themselves than with the lower degree vertices, and form tightly
interconnected communities. Preferential hub–hub interactions sug-
gested faster transmission in the network. Proteins specific for post-
translational modifications, involved in cancer progression or senes-
cence were extracted from various databases: Phosphositeplus [44]
for proteins showing acetylation, methylation and phosphorylation,
Cancer Gene Census (CGC) database [45] for proteins related to the can-
cer with their mutations, and HAGR [46] for proteins implicated in
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senescence. Kinase-specific phosphorylation sites on Sirt family of pro-
teins were predicted by Group-based Prediction System 2 [47]. The
gene-annotation enrichment analysis was mapped to nodes (Proteins)
for attaining information about biological processes, molecular func-
tion, and cellular location most pertinent to the Sirt network of the
nodes present in the interactome was analyzed through BiNGO
plug-in on consensus basis using Benjamini and Hochberg correction
for control over the false discovery rate under positive regression de-
pendency of the test statistics and the molecular function considered
were with significant p-value [48].

3. Results

3.1. First neighbors interactions of the seven Sirtuins in the human
interactome

The interaction map including the first neighbors of the seven
human Sirtuins has 228 nodes and 3769 edges. In the following
parts we will show the sub-networks of this Sirt-interactome cen-
tered on each of the seven human Sirtuins.

The first neighbor interaction map of Sirt-1 included 136 nodes and
1504 edges (Fig. 1) as already reported in our recent work [49]. The
clustering coefficient of this network was 0.719, the mean shortest
path length between any two proteins was 1.836 and the average de-
gree was 22.11. The analysis of the putatively important proteins of
Sirt-1 sub-network, detected on the basis of betweenness centrality,
bottlenecks and top degree nodes, resulted in the discrimination of
Sirt-1 itself and its key neighbors constituting different clusters pointing
Fig. 1. First order interactome map of all the seven Sirtuins w
towards entirely different functions (Table S1), i.e. HSPD1 (heat shock
60 kDa protein 1), YBX1(Y box binding protein 1), HSP90AB1 (heat
shock protein 90 kDa alpha, class B member 1), EEF1A1 (eukaryotic
translation elongation factor 1 alpha 1), and PRMT1 (protein arginine
methyl-transferase 1). In detail, mitochondrial HSPD1 chaperonin local-
ized outside mitochondria controls several steps in folding, transporta-
tion and assembly of proteins andmay act in the innate immune system
as a signaling molecule [50], HSP90AB1 is responsible for protein fold-
ing, stress induced refolding of proteins, degradation, morphological
evolution, and also shows intrinsic ATPase activity [51], YBX1 over-
expressed in cancer cell lines resistant to cis-platin has conserved cold
shock domains and unique DNA binding domain and regulates gene ex-
pression [52], EEF1A1 plays a pivotal role in protein synthesis and deliv-
ery of all amino-acyl-tRNAs to the ribosome, and PRMT5 regulates
many processes by post translational modifications such as chromatin
structure, signal transduction, DNA repair, Protein translocation and
transcriptional control [53].

Sirt-2 showed direct interactions with 78 proteins through 1138
connections (Fig. 1). This network showed a very high clustering coeffi-
cient of 0.827 with a path length of 1.6 and an average degree of 29.17.
The proteins present in the Sirt-2 interactome were found to be in-
volved mostly in acetyl CoA metabolism and catabolism, in oxidative
stress (keratin 1 and peroxiredoxin 2), in processes related to organ de-
velopment and muscle development (myogenic differentiation 1 and
EP300), in transcriptional co-activators and peptidyl lysine acetylations
(lysine acetyl-transferase 2A and 2B), in histone deacetylation, protein
amino acid deacetylation and covalent chromatin modification and re-
sponses to chemical stimulus (histone deacetylase 6).
here Sirts are shown in green and other proteins in red.
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Sirt-3 direct interactome comprised 31 nodes and 213 edges with
a high clustering coefficient of 0.822 (Fig. 1) and showed an involve-
ment in different metabolic processes like ATP binding, metal ion
binding and hydrolase activity. It presented densely interconnected
nodes that were observed in Sirt-2. In particular, HSPD1 (heat shock
60 kDa protein 1) showed the most bottlenecked node of the net-
work being also a clique protein, which forms a cluster between
Sirt-3 and Sirt-1 and is involved in unfolded protein binding with
other clique proteins like HSPA5 (heat shock 70 kDa protein 5),
HSPD1, CMYA5 (cardiomyopathy associated 5) and HSPA1L (heat
shock 70 kDa protein 1-like) and non clique proteins like HSP90B1
protein. Moreover, another important clique protein, part of a subset
between Sirt-1 and Sirt-3, was FOXO3 that can be modified by post
translational modifications and intensely associated with aging and
tumor suppressor functions [54]. On the other hand, XRCC6 (X-ray re-
pair complementing defective repair in Chinese hamster cell 6), being
involved in DNA binding, was observed in a clique protein among
Sirt-1, Sirt-6 and Sirt-3 whereas IDE (insulin degrading enzyme)
that is the clique protein between Sirt-3 and Sirt-4 represented a pos-
sible link between aging, diabetes, and neuro-degeneration [55,56].

Sirt-4 was interacting with all Sirtuin family as well as with the
solute carrier family 25 member 5 and 6 (SLC25A5 and SLC25A6)
and IDE (Fig. 1). Network statistics were not calculated due to the
small number of interactions. SLC25A5 and SLC25A6 were clique pro-
teins with Sirt-1, Sirt-2, Sirt-4 and IDE. IDE is a widely expressed zinc
metalloprotease that regulates both cerebral amyloid β peptide levels
and plasma insulin levels in vivo; in fact, it is linked to both Alzheimer
disease and diabetes mellitus [57], while SLC25A6 and SLC25A5 are
mitochondrial solute carriers for ADP/ATP and transport ATP in the
cytosol and ADP in the mitochondrial matrix. Knowing that Sirt-4
acts as a regulator of the insulin secretion in response to glucose
[58] and that glutamate is a key neurotransmitter in brain and, fur-
thermore, that 83% decrease in the level of free glutamate was
found in subjects with Alzheimer's disease [59], it is possible to sug-
gest that the Sirt-4 controls the glutamate levels in the brain.

Sirt-5, another mitochondrial member like Sirt-3 and Sirt-4, was
seen to interact with all the members of the Sirtuin family, as well as
with RELA (V-rel reticulo-endotheliosis viral oncogene homolog A)
and CPS1 (Fig. 1). In detail, RELA interacts with Sirt-1, Sirt-5 and Sirt-6
and is associated with negative regulation of metabolism and RNA bio-
synthesis, and with the activation of NFKB transcription factor [60],
while CPS is involved in the urea cycle intermediate metabolism, and
in the arginine biosynthesis and was already indicated as a substrate
of Sirt5 [61].

Sirt-6 showed interactions with XRCC5, XRCC6, PRKDC (protein ki-
nase, DNA-activated, catalytic polypeptide), CHD3 (chromodomain
helicase DNA binding protein 3), VIM (vimentin), CCNDBP1 (cyclin-
D1-binding protein 1), RELA as well as with all the Sirt family members
(Fig. 1) which are involved in DNAmetabolism, chromosome organiza-
tion and biogenesis. In particular, XRCC5, XRCC6 and PRKDC are associ-
ated with non-recombination repair [62], while Sirt-2, XRCC5, RELA,
XRCC6 are responsive to stress along with some heat shock proteins
[63]. Moreover, VIM, PRKDC and CHD3 are involved in intermediated
filament based process and in organelle organization and biogenesis,
where CCNDBP1 (cyclin-D1-binding protein 1) is found to be important
for immune cell signaling [64], and CHD3 in zinc binding functionality
[65].

Sirt-7 was seen to interact with HIST2H2AC and HIST2H2BE (his-
tones cluster 2 H2AC and H2BE), UBTF (upstream binding transcrip-
tion factor), POLR1A (polymerase RNA I polypeptide A), MAGED1
(melanoma antigen family D 1) and all Sirt family members (Fig. 1).
This Sirt-7 was responsible for the biological processes related to me-
tabolism like macromolecule metabolism, biopolymer metabolism,
proline biosynthesis and metabolism, and glutamine family amino
acid metabolism. In detail, UBTF was involved in transcription from
RNA polymerase1 promoter [66], POLR1A in transition metal ion
binding [67], MAGED1 in the p75 neurotrophin receptor mediated
programmed cell death pathway [68] whereas HIST2H2AC and
HIST2H2BE were involved in the compaction of chromatin into higher
order structures [69].

The compartmentalization of the direct network of Sirtuins showed
the different distributions of these proteins (nucleus or cytoplasm or
mitochondria or other cellular compartments) and their involvement
in different functions such as DNA binding, catalytic activity, regulation
of transcription activity and hydrolase activity. In detail, 42.35% of pro-
teins showed compartment specificity in nucleus or cytoplasm (Fig. S2).

3.2. Second order interactions for the seven Sirtuins

We analyzed the second order Sirtuin interactions which include
5786nodes and 243,365 edges (interactions) (Fig. 2), aswell as their to-
pological properties, to obtain information on protein function and to
understand their role and relative positions in human proteome [70].

The plot of the node degree distribution showed a decreasing
trend demonstrating that the Sirt family network has scale free prop-
ertywhere the bulk of peripheral nodes showed amolecular function
associated with transition metal ion binding and zinc ion binding
(Fig. 2). It also suggested occurrences of modules, i.e., subnetworks,
whose members were highly interconnected but with few links to
nodes outside the module. Moreover, the networks showed succes-
sive interconnected layers or inter-nested communities, with a hier-
archical organization where the sparsely linked nodes were part of
highly clustered areas, with the links between the different modules
(named community structures) maintained by few hubs [71]. The
clustering coefficient graph showed a decreasing trend and the
value related to the network heterogeneity, which accounts for the
variance of the connectivity, reflects the tendency of a network to
contain hub nodes (Fig. 2) [72].

The Sirt network showed an increasing trend of the neighborhood
connectivity distribution, which reports the average of the neighbor-
hood connectivity of all proteins (n) with k neighbors (Fig. 2). The re-
lated slope, equal to 0.405, evidenced the presence of high degree
nodes, known as hubs. Moreover, we evaluated also the related
assortativity coefficient (r), which ranges between −1 and +1 and
is related to the preference for a network's nodes to others that are
similar. In the Sirt network, the coefficient result is equal to 0.619 in-
dicating that our network showed assortativity with a correlation be-
tween nodes of similar degrees.

Moreover, we evaluated the betweenness centrality that provides
inferences on the importance of proteins on the basis of load placed
on the given node in the network, and, hence, information about
the core skeleton of the network. Betweenness centrality demonstrat-
ed an increasing trend with maximum load placed on: i) TP53 (tumor
protein p53), which is a DNA binding tumor suppressor protein, ii)
UBA52 (ubiquitin A-52 residue ribosomal protein fusion product 1),
which is involved in the maintenance of chromatin structure, the reg-
ulation of gene expression, and the stress response, and iii) EEF1A1
(eukaryotic translation elongation factor 1 alpha 1), which is a pro-
tein responsible for the enzymatic delivery of aminoacyl tRNAs to
the ribosome (Fig. 2). Then, we focused our attention on nodes show-
ing hub–hub interactions and we calculated whether these nodes ex-
hibit rich club property [73]. Twenty-five proteins exhibited hub–hub
interactions in network despite rich club coefficient less than one.
Core nodes of central module (EEF1A1 and UBA52) shape the core
skeleton of a network (high betweenness central proteins) with a
large number of short path lengths crossing through these proteins
which allows us to infer the faster information transfer at the core
and the rigidity associated with the networks (Fig. S3). The resilience
of the network skeleton was examined concerning i) 50 core commu-
nity centrality proteins (CC), and ii) 50 betweenness centrality (BC),
and 25 interlinked hub subnets were tested by deleting the proteins
present in any of the two networks from one of the top 50 protein



Fig. 2. SIRT 2nd order interactome visualized by spring embedded layout with color coded from red → yellow → green. Red nodes illustrated proteins with larger number of neigh-
bors and green nodes with lower vertices. Evaluation of topological properties of second order sirtuin interactome: (A) node degree distribution, (B) average clustering coefficient,
(C) neighborhood connectivity distribution, and (D) betweenness centrality measure.
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subnetworks. Targeted deletion of all the proteins, which were part of
the other two top-node sub networks, showed large disruption of
interlinked hub subnets (deleted BC and CC) whereas two other
subnets related to BC (deleted interlinked hub subnet and CC) and
Fig. 3. Three networks related to 50 core community centrality proteins (CC), 50 betweenne
of nodes present in other two networks, i.e. subnets of community centrality and interlinke
CC (deleted BC and interlinked hub subnets) remained largely unaf-
fected suggesting that hub proteins either had high information
transfer proteins or were high betweenness centrality proteins
which form the core skeleton of the network (Fig. 3).
ss centrality (BC) and 25 high degree interlinked hubs (IH) were reported after deletion
d hub nodes. The community centrality node.

image of Fig.�3
image of Fig.�2
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3.3. Modularization of network

Themost part of the functional activity inside cell is organized as a net-
work of interactingmoduleswhere genes and proteins co-operatively re-
spond to different conditions [74]. Therefore, the modular overlaps
exhibit the functional diversity of proteins.We calculated byModuLand
framework [43] the community centrality values corresponding to pro-
teins showing the influence of the Sirts interactome on the given pro-
tein, and, hence, the level of importance of the protein in the whole
Sirt interactome. The nodes associated with high community centrality
on the selected level (whole Sirt network) form the core of module of
the interactome. 20 overlapping modules of the sirtuin-network were
detected using the ModuLand plug-in for Cytoscape [43]. The modular
structure was organized around a core with mixed functions (Table 1)
where EEF1A1 module had the highest modular assignment value
which indicates many cores having interlinked hub nodes (Table S2).
Moreover, CSNK1A1 (casein kinase 1 alpha 1), HDAC1 and NDUFA10
(NADH dehydrogenase ubiquinone 1 alpha subcomplex 10) were in-
volved in cytoskeletal signaling (includingmicrotubule reorganization),
transcriptional regulation (including chromatin remodeling) and mito-
chondrial terminal oxidation and ATP synthesis, respectively. Other
detected overlapping modules were detected to play a major role in
the integration of cellular responses, in protein and RNA binding, in sig-
nal transduction, and in enzyme regulation and transferase activity.

3.4. Sirt family network involved in cancer subnet

Sirtuins are widely known as critical regulators of aging and cancer
and Sirt-1 was suggested to act as a double-edged sword in cancer
[75], furthermore, we focused our studies also on oncogenic mutations,
which were reported in the Cancer Gene Census (CGC) database [45].
The subnet related to cancer in the SIRT network was composed of 302
proteins out of 468 proteins present in CGC (Fig. 4). The centrality statis-
tics and modularization of the network were calculated only for the
connected components containing 279 nodes and 1677 interactions.
The clustering coefficient was comparatively less than that obtained in
SIRT first order and SIRT second order interactomes. In fact, the value
obtained for cancer related proteins was equal to 0.371 with average
number of neighbors of 12.10 and path length of 2.70 (Fig. S4). We
calculated the top ten proteins based on the different algorithms with
high centrality statistics listed in Table 2A, where we find five hub pro-
teins directly interacting with the SIRT family, i.e. EP300, JUN, RB1
Table 1
Molecular consensus function based on GO terms associated with 20 overlapping mod-
ules detected by ModuLand framework.

Modules Module Name Molecular function

Module 1 EEF1A1 Nucleotide binding
Module 2 CSNK1A1 Transferase activity, transferring

phosphorus-containing groups
Module 3 HDAC1 Transcription regulator activity
Module 4 KRT33B Structural molecule activity
Module 5 LSM2 RNA binding
Module 6 KALRN Enzyme regulator activity
Module 7 TIAM1 Enzyme regulator activity
Module 8 NDUFA10 Oxidoreductase activity
Module 9 TERF2IP DNA binding
Module 10 COPS6
Module 11 MRPS21
Module 12 FAM175B Ubiquitin binding
Module 13 POLA2 Nucleotidyltransferase activity
Module 14 TUBGCP3 Structural constituent of cytoskeleton
Module 15 ETFB Nucleotide binding
Module 16 RBPMS Transcription regulator activity
Module 17 GABRA1 Signal transducer activity
Module 18 GABRB2 Transmembrane transporter activity
Module 19 SARS Catalytic activity
Module 20 CNDP1 Transferase activity
(retinoblastoma 1), TP53 and EWSR1 (Ewing sarcoma breakpoint region
1). The analysis of themodularization evidenced that the Sirt network in-
volved in cancer has three overlapping modules with the following core
nodes: EP300, ERCC6 (excision repair cross-complementing rodent
repair deficiency complementation group 6) and XPA (xeroderma
pigmentosum complementation group A). EP300 exhibits transcription-
al regulation activity, ERCC3 and XPA showed high inter modular links,
and, hence, exhibit overlaps with similar functionality of damaged DNA
binding. The other low degree vertices of the cancer sub-network were
sparsely distributed contributing to the high average path length and
to lower values for centrality indices (like for example the clustering co-
efficient) (Table 3). Cancer proteins were more represented among
housekeeping genes [76]. In particular, PPP2R1A (protein phosphatase
2 regulatory subunit A alpha) and MYC (v-myc myelocytomatosis viral
oncogene homolog) were high information transfer proteins in the can-
cer subnet of the Sirt family network showinghigh community centrality
in the top 5% of proteins in whole SIRT family network.

3.5. Aging subnet in Sirt interactome

We analyzed the proteins related to aging from the human genomic
aging resource dataset [46] in the Sirt family interactome. The obtained
network comprised 198 proteins and 2506 interactions (Fig. 5). All the
statistical analyses related to node degree distribution, clustering coef-
ficient and topological coefficient showed a decreasing trend with, in
particular, a high clustering coefficient of 0.454 and the average number
of neighbors equal to 25.303 (Fig. S5). Centrality statistics of the aging
network in the SIRT interactome evidenced that i) TP53 showed the
largest value for betweenness centrality that illustrates the large load
placed on the node as larger number of short paths traverse through
the node and ii) TP53 occupied central positions within the communi-
ties towhich it belongs. Another central nodewas the YWHAZ (tyrosine
3-mono-oxygenase/tryptophan 5-monooxygenase activation protein
zeta polypeptide) that formed the core skeleton of the aging network
(Table 2B). Modular overlapping was not significantly observed but
rather short average path length between the nodes and larger homo-
geneity on combined basis suggested that the aging sub network was
easily synchronizable [77,78]. Since age progression is accompanied
by chronic inflammatory diseases leading also to cancer, we have hy-
pothesized that the same proteins can be deregulated or closely associ-
ated with the perturbed proteins in the network. In fact, in the SIRT
second order network, forty-two proteins were implicated both in
aging as well as cancerous conditions, and 61% of these proteins
exhibited DNA binding activity. Moreover, MYC, TP53, WRN (Werner
syndrome, RecQ helicase-like), RB1, EP300 and JUN had experimentally
evidenced interactions with Sirts.

3.6. Kinase subnet

Phosphorylation and dephosphorylation are essential for eukary-
otic signaling and about 30% of proteins was phosphorylated and
dephosphorylated at a given time governing many physiological pro-
cesses, which upon deregulation can cause cancer and other diseases
[79]. We extracted the sub-networks of 117 kinases linked with 1366
edges present in the Sirt family interactome (Fig. 6). Moreover, the
network results showed faster information flow with the least aver-
age shortest path length of 1.9 analyzed in all subnets and average
number of neighbors of 25.06 (Fig. S6). The average clustering coeffi-
cient for the network was equal to 0.664 and distribution showed a
negative slope whereas node degree distribution showed a decreas-
ing trend stating the kinase subnet to be robust (Fig. S6). Compart-
mentalization of the kinase subnet suggested the presence of
kinases at multiple locations, i.e. 85 in cytoplasm, 63 in nucleus and
22 in cytoskeleton. Gene ontological analysis highlighted that 82% of
the proteins in kinase network were implicated in regulation of cellu-
lar processes and 38% out of 117 kinases present in second order SIRT



Fig. 4. Sirt family network involved in cancer subnet with in green the proteins acetylated, in blue the kinases, in fluorescent green the proteins methylated, in red the housekeep-
ing, in orange the proteins involved in methylation and acetylation, in cyan the proteins involved in acetylation and kinases, in yellow the proteins acetylated and housekeeping,
and in magenta the proteins methylated and kinases.
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interactome was involved in response to stress. In detail, cyclin-
dependent kinase 1, 3, 4 and 6 (CDK1, CDK3, CDK4 and CDK6), PLK1
(polo-like kinase 1), and ATM (ataxia telangiectasia mutated) were
involved in mitotic cell cycle. Consequently, we extracted the proteins
present inthe first order interactome evidencing that the network
contained a bulk of central proteins that were the potential substrates
of 117 kinases. Insights on the kind of interactions possessed by
kinome in Sirt interactome were acquired through the gene ontolog-
ical data and centrality statistics. The kinome interacts with proteins
like TP53, RELA, JUN and MEF2D (myocyte enhancer factor 2D).
CDK1 and GS3K (glycogen synthase kinase 3) were directly
interacting kinases in the Sirt interactome. ATM, EGFR (epidermal
growth factor receptor), FGFR1 (fibroblast growth factor receptor
1), JAK 2 (janus kinase 2) and TTK were the kinases having
post-translational modifications and were implicated both in aging
and cancerous conditions. In the Sirt interactome, the kinases
exhibited acetylation property and were implicated in the cancer
and aging subnets; in fact, FGFR, JAK2 and EGFR kinase showed acet-
ylation. The acetylation of kinases suggests only two possible interac-
tion ways, one where Sirts deacetylase kinases and a second one
where kinases phosphorylate Sirts. Experimental identification of
phosphorylation sites is labor-intensive and often limited by the
availability and optimization of enzymatic reaction. Computational
methods of prediction may facilitate the identification of potential
phosphorylation sites; thus, to investigate the importance of the
phosphorylation in all the Sirtuins, we extrapolated this information
from their second order network. In particular, Sirt1 interacts with
106 kinases, Sirt2 with 95, Sirt3 with 68, Sirt4 and Sirt5 with 17,
Sirt6 with 74 and Sirt7 with 22 (see also Table S3 for details).

3.7. Acetylation and methylation subnets

We extracted in the Sirt interactome the subnetwork of proteins
having acetylation property. It comprised 1367 proteins and 44,873
interactions and showed scale free property with average number of
neighbors of 65.65. Hub proteins like EP300, RELA, and POLR2A
were located at the center of this network, together with two kinases,
ATM and TTK, that possessed methylation property, and EGFR that
showed acetylation. However all these proteins were implicated
also in aging as well as cancer subnetworks. Remarkably, 71 of
these proteins were found to be involved also in methylation and, be-
tween these there were also important housekeeping hub proteins
like TP53, EP300, NCOA2 (nuclear receptor coactivator 2) and
DNMT1 (DNA cytosine-5-methyltransferase 1) (Fig. S7). In particular,
the hub protein histone acyl transferase EP300 showed the highest mod-
ular bridgeness, showing both acetylation and methylation properties
and being implicated also in cancer and aging subnets. This protein inter-
acts directly with Sirt-1 and was involved in biological processes related
with chromatin silencing at telomere. Other acetylated and methylated
proteins with high centrality properties were observed in NCOA, MYC
and CLOCK (circadian locomotor output cycles kaput) that with the Sirts
potentially linked epigenetic regulation.
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Fig. 5. Sirt family network involved in aging subnet with in green the proteins acetylated, in blue the kinases, in fluorescent green the proteins methylated, in red the housekeeping,
in orange the proteins involved in methylation and acetylation, in cyan the proteins involved in acetylation and kinases, in yellow the proteins acetylated and housekeeping, and in
magenta the proteins methylated and kinases.
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4. Discussion

Biological processes inside our body are governed by the well-
defined organization of proteins into complexes, which perform differ-
ent functionality acting as molecular machines. The holistic vision, cen-
tered on network studies for the characterization of human diseases,
redefines the field of medicine by finding new and personalized treat-
ments different from the traditional approach which relies on simple
clinical observations [80]. Protein–protein interaction (PPI) networks
include small interwoven networks inside them. These small interwo-
ven networks contain functional information on complex biological
networks and interaction between proteins comprises information re-
lated to biological processes of the interactants. Using graphical ap-
proaches to study biological problems can provide an intuitive picture
or useful insights to help analyze complicated relations in these sys-
tems, as demonstrated by many previous studies on a series of impor-
tant biological topics, such as enzyme-catalyzed reactions [81–83],
inhibition of HIV-1 reverse transcriptase [84,85], protein folding kinet-
ics [86], drugmetabolism systems [87], as well as using automated ver-
sion of Wenxiang graphs [88] to study protein–protein interactions
[89–91].
In our studies, we focused on the molecular interaction maps of
the important protein family of the human Sirtuins, which is involved
in many important molecular functions and biological processes. The
analysis of the first order interactions for all seven Sirts evidenced
that, i) the Sirt-1 and Sirt-2 maps presented a very high number of
nodes and edges supporting the many experimental studies regard-
ing these two proteins and their involvement in many important bio-
logical processes (see Fig. 1A and B), ii) EP300, essential in the
processes of cellular proliferation and differentiation, was detected
as hub protein, both in Sirt-1 and Sirt-2 networks, iii) IDE (insulin
degrading enzyme), clique protein between Sirt-3 and Sirt-4 sug-
gested an involvement of these two proteins in aging, diabetes, and
neurodegenerative diseases, and iv), RELA interacts with Sirt-1,
Sirt-5 and Sirt-6 evidencing that it is associated to the activation of
the NFKB transcription factor.

The Sirt protein interaction network was seen to cover approxi-
mately 25% of human proteome in second-degree network and
exhibited scale-free and preferential hub–hub inter-connected pro-
teins. In Table S4 the statistical analysis used to validate their results
is reported. In particular, in this network, 20 overlapping modules
suggested pleiotropic functions and the top 10 core proteins showed
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Table 2
Statistical analysis on Cancer (A) and Aging (B) subnets extracted from second order Sirt interactome in terms of degree, betweenness, stress, MCC (Maximal Clique Centrality), DMNC
(Density of Maximum Neighborhood Component), MNC (Maximum Neighborhood Component), EPC (Edge Percolated Component). The resulting protein hubs are shown in bold and
underlined.

Sr. no Degree Betweenness centrality Stress MCC DMNC MNC EPC

A
1 EP300 BRCA1 BRCA1 BRCA1 BRCA1 BRCA1 BRCA1
2 CREBBP EP300 CREBBP EP300 PML PML CREBBP
3 TP53 CTNNB1 EP300 CREBBP ABL1 ABL1 EP300
4 BRCA1 JUN DDX5 ATM BCL6 BCL6 DDX5
5 CTNNB1 TP53 SMARCA4 SMARCA4 ATM ATM ATM
6 SMARCA4 CREBBP ATM RB1 PTEN PTEN TP53
7 JUN SMARCA4 TP53 DDX5 EWSR1 EWSR1 AKT1
8 PTPN11 AKT1 AKT1 AKT1 AKT1 AKT1 SMARCA4
9 RB1 RB1 JUN CTNNB1 CREBBP CREBBP ABL1
10 PIK3R1 ABL1 CTNNB1 PIK3R1 EP300 EP300 CTNNB1

B)
1 TP53 TP53 TP53 PTK2 ERCC8 TP53 TP53
2 PRKDC YWHAZ MAPK3 PTK2B FGFR1 PRKDC PRKDC
3 MAPK3 PRKCA PRKDC MAPK3 PDPK1 MAPK3 MAPK8
4 MAPK14 MAPK3 PRKCA PRKCA IRS1 MAPK14 MAPK3
5 MAPK8 MAPK14 YWHAZ SHC1 RET MAPK8 GRB2
6 PRKCA PRKDC MAPK14 GSK3B PTK2B PRKCA STAT3
7 GSK3B PCNA PCNA INSR INSR GSK3B PRKCA
8 GRB2 MAPK8 MAPK8 MAPK14 ERCC1 GRB2 MAPK14
9 YWHAZ GSK3B GSK3B JAK2 PDGFRB YWHAZ EGFR
10 RB1 PARP1 GRB2 PRKDC HMGB2 RB1 GSK3B
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hub–hub interactions in EEF1A1module with mixed functions such as
ATP-binding, cytoskeletal organization and transcriptional regulation.
In fact, the Sirt network showed a modular structure in the core
which comprised mixed functions with three interrelated network
structures: i) hub–hub interlinked proteins were found to be involved
in important functions constituting the core module of the network
Fig. 6. Sirt family network involved in kinase subnetwith the proteins involved in themethylat
in acetylation by inverted arrowheads. Different colors indicate proteins involved in cancer (g
and involving a large number of shortest path lengths and hence
can contribute unevenly towards global communication in Sirt net-
work, ii) community structure involved in processes related to bind-
ing and top community centrality proteins showed localized in
multiple cellular compartments and iii) the most part of Sirt network
followed peculiar hub and low vertex functional organization for
ion by squares, those involved inmethylation and acetylation by diamonds, those involved
reen), in aging (yellow), in cancer and aging (orange) and in housekeeping (red).
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Table 3
Overall statistics related to various subnets and SIRT interactome network.

Subnets Average number of neighbors Diameter Average shortest path length Network heterogeneity

Sirt family network 84.12 5 2.6 1.385
Acetylation subnet 65.65 5 2.4 1.215
Aging subnet 25.3 4 2 0.726
Kinases subnet 23.35 4 1.9 0.913
Methylation subnet 15.16 4 2.1 0.891
Cancer subnet 11.11 5 2.7 1.019
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providing robustness against random deleterious mutations, which
might influence the metal ion binding molecular function associated
with peripheral nodes.

Moreover, we expanded our study to proteins involved in cancer due
to somatic mutations; this sub-network showed low degree vertices
with high average path lengths and hence inefficiency in information
transfers. On the other hand, the aging sub-network showed high level
of synchronizability as evidenced from the shortest average path lengths
typical of a homogeneous network. This is strictly correlated to specific
functions or dysfunctions of biological systems; in fact, in epilepsy and
Parkinson's disease, seizure activity and tremor are due to excessive syn-
chronization [92,93] and chronic disruption in circadian system pro-
motes aging and is prone to various disease states including cancers,
heart disease, ulcers, and diabetes [94,95]. However, when we mapped
the proteins common to aging as well as cancer in the second order
SIRT interactome, we evidenced that 42 proteins associated with cancer
and aging and six proteins (MYC, TP53, WRN, RB1, EP300 and JUN)
showed direct interaction with the SIRT family interactome. This con-
firms that the Sirt family is involved contemporaneously in chronic in-
flammatory processes leading both to aging diseases and cancer. The
Sirt network consists also of acetylated substrates such as transcription
factors and proteins responsible for circadian rhythms, which can influ-
ence metabolic pathways and whole cellular milieu whereas aging
subnet showed proteins withwide variety of posttranslational modifica-
tions ranging from methylation to acetylation and phosphorylation.

Finally, since many physiological processes and some diseases are
associated with abnormal phosphorylation and about 30% of proteins
is phosphorylated and dephosphorylated in highly dynamic interac-
tions, we analyzed the kind of biological processes and kinases asso-
ciated with the Sirt network. In particular, in the second order
network of all Sirtuins we evidenced that Sirt-1 interacts with 106 ki-
nases, Sirt-2 with 95, Sirt-3 with 68, Sirt-4 and Sirt-5 with 17, Sirt-6
with 74 and Sirt-7 with 22. This surprisingly high number of kinases
is very interesting because the presence/absence of phosphate groups
seems important in modulating the recognition of the different pro-
teins and to regulate the enzymatic activity [96]. In a recent paper
we showed that most Sirtuins possess numerous phospho-sites on
terminal segments [97]. This special condition should be considered
taking into account that these segments are intrinsically disordered
and therefore very flexible. All this leads us to consider that they rep-
resent structural regions that are highly exposed and available to the
recognition of molecular partners; moreover, they have charged
stretches in which phospho-sites are often allocated by generating
phospho-isomers important for the one-to-one recognition among
the numerous molecular partners that each of these proteins pos-
sesses. The general picture that comes out of the Sirtuins is amazing.
They are Hub proteins that operate deep controls in the metabolic
network, and that can act in different molecular compartments
where, under the control of kinases, specific to that particular envi-
ronment, recognize the correct molecular partners among the many
that each of them possesses. This mechanism of action, previously
never clearly focused because of the strong focus on the study of
their physiological and pharmacological effects that has practically
neglected the study of the molecular basis of their action, should be
extended because it is possible to imagine that other types of
post-translational changes may come into play.
In conclusion, we report also the overall statistics found in the Sirt
interactome and in its different subnets (Table 3). In fact, the cancer
sub-network had the highest average path length indicating the pres-
ence of low degree vertices sparsely distributed whereas its values for
centrality indices, like clustering coefficient, were less than those of
other subnets corresponding to aging and post translational modifica-
tion. Moreover, the Sirt family network showed the highest value
(equal to 1.358) for network heterogeneity due to the considerable big-
ger size of this network and to the presence of many hub nodes. On the
other hand, the cancer subnet had the highest heterogeneity suggesting
its stronger tendency to have hub proteins. Finally, the subnets related
to aging and posttranslational modifications, in particular the subnet
of kinases, demonstrated smaller values for the average path length,
and this means faster rate of information flow. Our interactomic analy-
ses of this amazing family of proteins support not only many of their
known metabolic involvements in humans, which is evidence of a
sound analysis, but also open a window on their complex molecular
mechanisms of action that, at present, are still poorly known as well
as on new metabolic involvement. Thus, a systematic use of the net-
work studies and their tools clearly open new opportunities for a better
understanding of their complexity [98].

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.bbapap.2013.06.012.
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