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Abstract The network paradigm is increasingly used to de-
scribe the topology and dynamics of complex systems. Here,
we review the results of the topological analysis of protein struc-
tures as molecular networks describing their small-world charac-
ter, and the role of hubs and central network elements in
governing enzyme activity, allosteric regulation, protein motor
function, signal transduction and protein stability. We summa-
rize available data how central network elements are enriched
in active centers and ligand binding sites directing the dynamics
of the entire protein. We assess the feasibility of conformational
and energy networks to simplify the vast complexity of rugged
energy landscapes and to predict protein folding and dynamics.
Finally, we suggest that modular analysis, novel centrality mea-
sures, hierarchical representation of networks and the analysis of
network dynamics will soon lead to an expansion of this field.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The network concept is widely used to analyze and predict

the dynamics of complex systems. When talking about net-

works, the complex system is perceived as a set of interacting

elements (nodes, vertices), which are bound together by links

(contacts, edges, interactions). In usual networks (graphs) links

represent interactions between element pairs. Links usually

have a weight, which characterizes their strength (affinity,

intensity or probability). Links may also be directed, when

one of the elements has a larger influence to the other than vice

versa. Most self-organized networks are small-worlds, where

two elements of the network are separated by only a few other
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elements. Networks contain hubs, i.e. elements, which have a

high degree (or in other words: have a large number of neigh-

bors). Random networks have a Poissonian degree distribu-

tion, which means that they have a negligible amount of

hubs. On the contrary, in many networks we observe a scale-

free degree distribution, which means that the probability to

find a hub with a number of neighbors a magnitude higher is

a magnitude lower (but, importantly, not negligible). Net-

works can be dissected to overlapping modules (communities,

groups), which often form a hierarchical structure [1–7].

We must warn that the above summary of the major features

of self-organizing, real-world networks is largely a generaliza-

tion, which is often not observed in its pure form. Real-world

networks are often heterogeneous, and their different modules

may behave completely differently. Moreover, sampling bias

and improper data analysis may show the above features in

such cases, where they do not actually exist. Therefore, special

caution has to be taken to scrutinize the validity and extent of

datasets, use correct sampling procedures and adequate meth-

ods of data analysis [8–11].
2. Topological networks of protein structures

In protein structure networks network elements represent

segments of the protein, while their weighted links are con-

structed by taking into account the physical distance between

these elements. Network elements can be atoms, like the aC

or bC atoms of amino acids. However, most of the times ele-

ments of protein structure networks are whole amino acid

side-chains. Currently, un-weighted protein structure networks

are much widely used than weighted ones. In un-weighted pro-

tein structure networks a cut-off distance (which is usually be-

tween 0.45 and 0.85 nm, Table 1) is introduced, and only those

amino acid side-chains are connected with un-weighted links,

which are nearer to each other than the threshold set by the

cut-off distance (Fig. 1). These networks are usually called ami-

no-acid networks, residue-networks or protein structure

graphs to discriminate them from ‘protein networks’, which

is a widely used term for protein–protein interaction networks.

We will use the term ‘protein structure network’ in this paper

to denote this type of description of protein-residue topology.

Protein structure networks have been used first as a form of

data-mining to help the structure comparison of proteins and

to identify structural similarities [12,13]. However, after 1998

the approach started to use the expanding knowledge of
blished by Elsevier B.V. All rights reserved.
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Fig. 1. A protein structural network. An illustrative segment of a
protein structural network (right) is derived from a 3D representation
of a protein (left), where distinct parts (atoms or most of the times
whole amino acid side-chains, open circles on the left) will be the
network elements (black filled circles on the right), while the links of
the network (solid lines on the right) are constructed by taking into
account the physical distance of the respective protein parts from each
other. Please note, that in a more detailed picture these topological
links can also be strong and weak depending on distance (correlating in
many cases with the bond-strength within certain limits) between the
respective protein segments.

Table 1
Protein structure, energy and conformational networks

Definition of links in the networka Usual purpose of network representation References

If the distance between amino acid side-chains is
below a cut-off distance (usually between 0.45 and
0.85 nm) fi un-weighted link

Detection of details in protein structure [12,16]

Distance between bC atoms fi weighted link Detection of details in protein structure [14]
Weight is constructed from the number of possible

links between the two amino acid side-chains, if the
distance between amino acid side-chains is below
a cut-off distance fi weighted link

Detection of details in protein structure [25]

Hydrogen bonds Analysis of protein structure and dynamics [24]
Distance between aC atoms fi weighted link treated

as a spring
Construction of an elastic network model to

assess protein dynamics
[41]

Treat all distances as spring and form a spring network Construction of an elastic network model to
assess protein dynamics

[43]

Conformational transitions Predict native structure and assess the probability
of conformational transitions

[27,63,64]

Saddles of the energy landscape (representing
conformational transitions) fi un-weighted or
weighted links

Simplify the multitude of basins on rugged energy
landscapes to predict protein folding pathways

[55,57,59]

a Protein structure networks are also called as amino-acid networks, residue-networks or protein structure graphs to discriminate them form ‘protein
networks’, which is a widely used term for protein–protein interaction networks.
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network studies, which led to several important results, which

we will describe in detail in the following sections [14–16].

As an exception from most self-organized networks, the de-

gree distribution of protein structure networks seems to be

Poissonian and not scale-free [17,18]. The Poissonian degree

distribution means that protein structures have a much smaller

number of hubs than most self-organized networks including

most cellular or social networks. The major reason for this

deviation from the scale-free degree distribution lies in the lim-

ited simultaneous binding capacity of a given amino acid side-

chain (also called as excluded volume effect). The explanation
behind the scale-free degree distribution of macromolecular

assemblies is that macromolecules (e.g. proteins) have much

less constraints to increase their contact surface, and are not

restricted to simultaneous binding only, since they may leave

their partners and bind to different neighbors. Similar assump-

tions (to a greater extent) hold to us while forming social net-

works.

The limited amino acid side-chain binding capacity contrib-

utes to the fact that each amino acid has a characteristic aver-

age degree. This depends on the interaction cut-off, which

makes hydrophilic amino acids ‘strong hubs’ (observed at high

interaction cut-off allowing low overlaps), and hydrophobic

amino acids ‘weak hubs’ (at low interaction cut-off allowing

high overlaps), respectively. Hubs are integrating various sec-

ondary structure elements, and, therefore, it is not surprising

that they increase the thermodynamic stability of proteins

[19,20].

Key amino acids (nucleation centers), which were shown to

govern the folding process, are central residues of the topolog-

ical network representing the transitional conformation. How-

ever, central amino acids of the transitional conformation are

not the same as central amino acids of the native conformation

reflecting a gross-rearrangement of protein networks during

the folding process [14,16,21]. Similarly, a redistribution of

central residues was observed, when active and inactive confor-

mations of hemoglobin were compared [22]. Residues with

small average of their shortest path lengths (also characterized

by the centrality measure of the inverse of the mean shortest

path lengths, called closeness or inverse geodesic length) are of-

ten found in the active or ligand binding sites of proteins [23].

This may reflect that active or binding sites are preferentially

centered within the protein structure network. Central amino

acids have also been revealed by the analysis of hydrogen-

bonding networks (HB plots), i.e. 2D representations of hydro-

gen-bonds of non-adjacent amino acids [24].

Protein structure networks are assortative (meaning that

their hubs preferentially associate with other hubs), and have

a hierarchical structure (there are central hubs, which associate

with more hubs and ‘peripheral hubs’, which have less hub

neighbors than the central hubs). Interestingly, both the
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assortativity and hierarchical structure is valid only to the pro-

tein structure subnetwork of hydrophobic amino acids, but

cannot be observed with the subnetworks of hydrophilic and

charged amino acids confirming the key role of hydrophobic

interactions in the core-structure of proteins [25].

Proteins are small-worlds. In the small-world of protein

structures any two amino acids are connected to each other

via only a few other amino acids. This feature is true to most

globular and fibrous proteins [17,18,26,27]. Small-worldness is

valid to the protein residues residing both in the protein core

and on the surface of proteins [17]. Dokholyan et al. [21] found

that small-world type connectivity of the protein structure net-

work determines folding probability (proteins with denser pro-

tein structure networks fold easier), and the small-worldness of

the protein structure network increases during the folding pro-

cess as the protein structure becomes more and more compact.

However, we must warn that most observations above were

based on un-weighted small-worlds. Assessment of weighted

small-worlds may give interesting surprises in the future.

Motif (pattern) search in protein structure networks has also

been addressed in detail. Motifs are widely and characteristi-

cally occurring assemblies of a few network elements (typically

3–6 amino acid side-chains), which can be identified, if mem-

bers of an evolutionary related protein set consisting five or

more proteins are compared. Such motifs can be the well-

known Ser/His/Asp catalytic triad, the zinc-finger or EF-hand

metal coordination sites, etc. However, the number of ‘mean-

ingful’ motifs is much higher than this, and can be in the range

of 500 in a given protein set. Several network-based programs,

such as ASSAM or DRESPAT have been developed for the

search of motifs in protein structure networks [13,28].

Protein structure networks often have modules (i.e. commu-

nities of amino acids, which have a much higher intra-modular

density, than the density of their inter-modular contacts link-

ing them to other modules). These network modules have been

determined by spectral graph-clustering methods of protein

structural networks, and were shown to correspond to protein

domains [14]. Domains tend to move together, which was used

to dissect the inter-domain residues, which are important in

regulation of protein function [29,30]. Locally dense structures

of hydrogen-bond networks of proteins have been called as

‘stabilization centers’ and were identified with the program

SCide [31].

Domains usually fold separately, have a function and are

conserved during evolution. The distribution of the folds of

various domains follows a scale-free pattern [32] meaning that

there is a small number of very ‘popular’, stable folds, and we

have a relatively big number of unique, orphan folds. The

underlying reason of the ‘popular’ folds is evolutionary selec-

tion, which preferred those structures, which are both stable

and fold easily. These structures are the ones, which have the

common feature of the small-worldness and the other topolog-

ical specialties, which were either mentioned above, or will be

detailed further in Section 5.
3. Unstructured regions: a transition to protein dynamics

Unstructured proteins (or unstructured protein regions),

which are also called as intrinsically disordered proteins (IDPs)

became a focus of intensive studies in recent years. The lack of

conventional secondary structure in protein segments or in
entire proteins helps a lot of binding and recognition processes,

and increases the dynamics of both single proteins and protein

complexes [33]. However, the disorder of protein structure is a

matter of time-scale, and is much more prevalent than it is

thought to the first glance. Flexibility of the polypeptide-chain

leads to structural fluctuations [34]. However, this ‘short-term’

disorder is caused by fluctuations around an equilibrium con-

formation, which is different from the lack of equilibrium con-

formation observed in unstructured protein regions. We will

summarize these dynamical aspects of protein disorder in the

following section.
4. Protein dynamics: quasi-harmonic movements, restricted

relaxation and avalanches

The early work of Ansari et al. [35] already showed the exis-

tence of ‘protein-quakes’, i.e. the cascading relaxation ava-

lanche of myoglobin after the photodissociation of carbon

monoxide. A number of protein kinetics, including the above-

mentioned carbon monoxide dissociation, enzyme actions, ex-

change of protein protons to those of water and protein

folding, are similar to Levy-flights, and show a scale-free statis-

tics in the time-gaps between elementary conformational

changes as well as in the magnitude of these changes [36–38].

Scale-free distributions and avalanches resemble to the behav-

ior in ‘self-organized criticality’, and are typical features of sys-

tems with restricted relaxation [4]. In proteins the restrictions

come from the necessity to break bonds in large-scale confor-

mational transitions, which can be called as a local unfolding

event. However, most protein motions (such as those observed

after ligand binding) do not require bond-rearrangements and

can be well approximated by quasi-harmonic dynamic [39].

In most conformational rearrangements the above scale-free

distributions become more complex, which is due to the hier-

archical and modular structure of the underlying protein struc-

tural network. In these real scenarios we observe the

integration of the correlated scale-free distributions of the indi-

vidual, overlapping network modules [36–38]. As an example

of the inter-modular correlation of protein dynamics, Balog

et al. [29] recently showed that conformational transitions of

the individual domains are not additive in the simulation of

phosphoglycerate kinase dynamics. Correlated motions of a

network of distant residues have also been observed in dihy-

drofolate reductase [40].

As an example for the use of protein structural networks for

the analysis of protein dynamics, fluctuations of amino acid

side-chains are correlated with the mean of the shortest path

lengths of the amino acid in the protein structural network

[17]. This reflects that more central amino acids (having a

shorter average of their shortest path lengths) have a more re-

stricted motion. Protein structural networks take into account

only the interactions between amino acid side-chains, and ne-

glect the constraints of the protein backbone. This is not a

problem, if we analyze the topology of these networks, and

want to draw conclusions for the structure and stability of pro-

teins. However, it may restrict the analysis, when we would like

to use the dynamics of topological networks to explain protein

motions and rearrangements. This problem is circumvented by

the elastic network model, where only the atomic coordinates

of the aC atoms are used to build the network. Here, a

harmonic potential is used to account for pairwise interactions
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between all aC atoms within a cut-off distance, which was 1 nm

in the study of Zheng et al. [41].

Using the above elastic network analysis a set of sparsely

connected, highly conserved residues were identified, which

are key elements for the transmission of allosteric signals in

three nanomachines, such as DNA polymerase, myosin and

the GroEL chaperonin [41]. Importantly, central amino acid

residues in ‘conventional’ protein structure networks were also

identified as strategically positioned, highly conserved key ele-

ments of allosteric communication by other network con-

structing methods using both bC atoms, or whole amino

acid side-chains [14,22]. These agreements indicate that the

above network construction methods (Table 1) complement

and support each other. Clusters of amino acids around the ac-

tive centers or ligand binding sites expand in an unparalleled,

unique fashion, if the cut-off distance is increased, which also

shows the unique centrality of these key functional segments

– now at a higher level of network structure [14]. In agreement

with the above observation, protein motions of substrate-free

enzymes were shown essentially the same as the characteristic

motions during catalysis, and had a frequency corresponding

to the catalytic turnover rate. These motions extend much be-

yond the active center, which here again implies that concerted

motions of a wide network of residues spanning the entire pro-

tein help enzyme catalysis [42].

Another elastic network representation treats all atomic dis-

tances as springs, and forms a spring network (Table 1). Using

this approach overconstrained (having more crosslinking

bonds than needed) and underconstrained (with less crosslink-

ing bonds than needed) protein regions were identified. These

regions were nicely corresponding with rigid and flexible pro-

tein segments, respectively [43].

Protein dynamics can also be assessed by analyzing the

propagation of perturbations in the hydrogen-bond network

of the protein. A simplified, 2D network representation of

hydrogen bonds, called HB-plot already revealed a number

of key features of protein dynamics in the examples of cyto-

chrome P450 and ligand-gated ion channels [24]. Hydrogen-

bond rearrangements are also key elements of the involvement

of water in protein dynamics as described in the following sec-

tion.
5. Protein dynamics: water as a lubricant

Proteins may also ‘borrow’ flexibility from their surround-

ing. Water helps to overcome many kinetically restricted seg-

ments of protein motion acting as a ‘lubricant’. Water

molecules make a hydrogen-bond network as well as fluctuat-

ing hydrogen bonds with peptide bonds and amino acid side-

chains [4,44–47]. These transient changes induce a fluctuation

in the energy level of the actual protein conformation, and

open a possibility for a transient decrease in the activation en-

ergy between various conformational states. In agreement with

these assumptions, a paper from Peter Wolynes’ lab [48]

showed that water efficiently lowers the saddles (activation

energies) of the energy landscapes and makes previously for-

bidden conformational transitions possible. Interestingly,

water-induced fluctuations decrease as protein folding pro-

ceeds [49], which may indicate a decreased help for protein

folding as the multitude of conformational states converge to

the native conformation. The detailed analysis of the contribu-
tion of water molecules to the hydrogen-bond networks of pro-

teins awaits further investigation.

We have quite numerous and sometimes contradictory

observations on the residual protein mobility in the absence

of water [4,45–47]. On one hand, a ‘monolayer’ of water mol-

ecules and their hydrogen-bond network is needed on the pro-

tein surface to restore the dynamics of biomolecules. The

dynamics emerges, when the individual water molecules estab-

lish the percolation of their hydrogen-bond network [50]. On

the other hand, in many enzymes a residual enzyme activity

can still be observed at very low hydration levels [51]. Detailed

investigations were able to discriminate protein movements,

called slaved processes, which need the contribution of water

as the solvent, and movements, which are independent of the

solvent, called non-slaved processes [52]. Though several pro-

teins can withstand a transfer to non-aqueous media, most

enzymatic functions are stopped in the complete absence of

water. Moreover, several dry proteins have a ‘memory’. They

preserve enzyme activity, if their structure has been previously

stabilized. These dry proteins ‘remember’ to their active state,

since their conformational changes are frozen in the absence of

water [53]. Network analysis of hydrogen-bond networks at

different hydration levels will be an exciting task of the future.
6. Energy and conformational networks in the description of

protein dynamics

Conformational states of proteins can be efficiently de-

scribed by energy landscapes (Fig. 2). The energy landscape

may be simplified to an energy network. Here, nodes of the

network represent local energy minima and links between these

energy minima correspond to the transition states (saddles) be-

tween them (Table 1). The energy network of proteins has both

a small-world and a scale-free character [54–56]. The assess-

ment of weighted small-worlds will be a task of the future

and may give interesting surprises. A weighted version of the

energy network has been recently described by Gfeller et al.

[57], where module determination methods were used to find

the basins of the underlying energy landscape. This approach

is helpful all the more, since the number local minima on the

energy landscape is an exponential function of the residues

involved [58], and requires a simpler, ‘renormalized’ represen-

tation to handle and understand its complexity both computa-

tionally and cognitively.

The modularized energy network proved to be heteroge-

neous, where scale-free-type degree distributions were ob-

served only in that part of the modules, which had a major

contribution of enthalpy changes (enthalpy-dominated energy

basins of the underlying energy landscape). On the other hand,

entropy-dominated modules showed a Gaussian degree-distri-

bution pattern [57]. The restriction of scale-free degree distri-

bution to network segments and the overlap of scale-free

distribution with a Gaussian degree distribution agrees well

with recent findings on topological networks [9–11]. The ‘com-

plexity’ of energy networks (in this very rough sense meaning

the number of energy basins on the energy landscape) has been

suggested as an important measure of the ‘ruggedness’ of the

energy landscape helping the discrimination between ‘easy

folder’ proteins from those, which get stuck in the morass of

possible conformations [59]. We have to note, that to define

the links between network topology and complexity in the



Fig. 2. Energy network representation of the conformational transitions of protein dynamics. An illustrative energy landscape is shown as a 3D
image (center) and as a contour plot (left). On the right its transformation to an energy network is described. In the energy network representation
(right) nodes represent local energy minima, while solid and dotted lines denote strong and weak links representing low and high activation energy
transitions between two local energy minima, respectively. The rectangle on the bottom right of the network represents the lowest energy state to
mark the native state of the respective protein.
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numerical sense (meaning, e.g. the number of individual

parameters necessary to predict the behavior of the network)

is a very difficult task, which will be a potential breakthrough

of the future.

Modularization of the energy network may also help us to

solve the basic dilemma of the definition of energy networks,

i.e. ‘‘What may we regard as a local energy minimum of the

underlying energy landscape?’’ Local minima are by far not

only sharp, well-defined topological features of the energy

landscape. Many times local minima may form or may tempo-

rarily expand to shallow local basins with numerous fluctuat-

ing ‘real’ minima inside. Therefore, a more exact approach is

to take all possible conformations as a ‘local minimum’ and

determine the basins as primary modules of the resulting hier-

archical networks.

Additionally, we may also think on the directedness of the

energy networks. In principle, the higher is the difference be-

tween the energy of local neighboring energy minima, the more

directed is the link between the two minima in the energy net-

work.

The small-worldness of the energy network may give an

underlying explanation of the high dynamism of protein struc-

ture: a node of the network representing a protein conforma-

tion is only a few steps (conformational transitions) apart

from any other protein conformations. The energy landscape

is hierarchical, and contains a number of hierarchically orga-

nized traps, which explain well the non-exponential, stretched

kinetics in the early phase of protein folding as well as the

aging of proteins at cryogenic temperatures [60–62]. This hier-

archical nature makes the energy network resemble to a frac-

tal-like structure, similar to that of the Apollonian networks

[58].

Another network representation of the energy levels behind

protein conformations is the ‘conformational network’ (also

called configuration space network) of proteins, where the

individual nodes are corresponding to the conformations,

and the links are the conformational transitions between them

(Table 1 [27,63,64]). The energy networks above and the con-

formational networks here obviously highly resemble to each

other, since essentially they are representing the same ensemble

of protein states – approaching it from different datasets using

slightly different rules. Both networks were used to predict the

native protein structure as well as to assess the probability of

various conformational transitions.
The combination of the ‘conformational networks’ (energy

networks) with the underlying multitude of the respective pro-

tein structural networks of the individual protein conforma-

tions can be tackled by the analysis of the dynamics of

protein structural networks. This important task will be a

key development of future studies as we highlight in the fol-

lowing section.
7. Summary and perspectives

In summary, we have shown that general assumptions of

network studies, such as the small-world character and the

scale-free degree distribution of many real-world networks

had a great impact on our understanding of both protein

structure networks and protein conformational/energy net-

works.

� Both protein structure networks and conformational net-

works are small-worlds, which reflect the compactness

and explain the exceptionally high dynamism of protein

structure, respectively. Hydrophobic amino acids seem to

play a more important role in the integration of protein

structure networks than hydrophilic or charged amino

acids, which shows the importance of the hydrophobic core

of globular proteins.

� Hubs and central residues are integrating secondary struc-

ture elements, and increase protein stability. Central

residues are strategically positioned, govern many confor-

mational changes, and are often essential for the transduc-

tion of allosteric signals. Central residues are often found in

the active, or ligand binding sites of proteins, and make

these protein segments central parts of the topological orga-

nization of protein structure. This may explain why active

centers and ligand binding sites often govern the dynamics

of the entire protein triggering extreme avalanches of pro-

tein motions during enzyme catalysis or signal transduc-

tion.

� The modules (communities) of protein structure networks

already helped us to identify key inter-modular residues,

which often govern conformational transitions at domain

boundaries. Modular analysis of conformational/energy

networks is essential to simplify rugged energy landscapes

‘renormalizing’ them to a form, which is both computation-

ally and cognitively tractable. This will help us both to
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discriminate between ‘easy folder’ proteins from those,

which have a large number of folding traps and to have a

deeper understanding of protein dynamics.

Recent advance in network science opens a lot of possibilities

to gain more information from both protein structure net-

works and conformational/energy networks:

� A systematic comparison and analysis of proper link

weights (instead of cut-off distances and un-weighted links)

and network building rules (networks of selected key atoms,

or of the weighted sum of amino acid side-chain atomic

coordinates) is a task of the future. Re-analysis of small-

worldness in a weighted network may give novel surprises.

� A more refined analysis of the hierarchical and overlapping

structure [5,6] of protein structure network modules still

holds a lot of surprises in the identification of key protein

residues governing enzyme activity, allosteric regulation,

function of protein motors, signal transduction and protein

stability.

� Modular analysis will also lead to novel centrality measures

going beyond the concept of local centrality (hubs) and glo-

bal centrality (central residues in the sense of closeness or

inverse geodesic length). Centrality indices taking into ac-

count weights and all levels of topological structure should

be developed and used to identify key protein residues

(modular centers, inter-modular bridges and elements of

multiple overlapping regions) in a graded manner.

� The introduction of weighted and directed links as well as a

systematic hierarchical modular analysis of the conforma-

tional/energy networks may solve the long-standing

problem of the incomprehensibility of rugged energy land-

scapes.

� As a later development the introduction of non-paired

interactions (hypergraphs like at the early work of

Finkelstein and Roytberg [65]) may open a way to analyze

even more refined details of protein structure and transi-

tions.

� Finally and most importantly, the analysis of the dyna-

mism and evolution [66] of protein structural networks

has not been explored so far. Understanding the dynamics

of protein structural networks will help us to understand

the complexity of protein dynamics by identifying corre-

lated regions of protein structural networks, which may

well correspond to correlated motions of these regions.

The introduction of ‘protein games’ [46] will also help us

to understand this complex phenomenon. As an initial

finding, cooperative protein regions of protein conforma-

tional networks revealed by perturbational analysis gave

novel evidence for the central arrangement of active cen-

ters [67].

We believe that the literature of protein network studies is

right before an expansion. This phenomenon is called as ‘tip-

ping point’ in networks [68] and shows a sudden increase in

the applicability of newly developed concepts. We hope we

may have contributed a little to this increase with the current

review.
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