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COMPUTER IMPLEMENTED METHOD,

PROCESSOR DEVICE AND COMPUTER

PROGRAM PRODUCT FOR DESIGNING

INTERVENTION INTO REAL COMPLEX
SYSTEMS

This is the national stage of International Application
PCT/HU2014/000126, filed Dec. 17, 2014.

In general, the present invention relates to modeling and
simulation of real complex systems. More particularly, the
present invention relates to a computer-implemented
method, a processor device and a computer program product
for designing intervention into real complex systems,
wherein the complex system is of technical or biochemical
nature and modeled by a network in which objects of the
system are represented by points and the relations between
the objects are represented by edges between the network
points, and wherein the state of the objects are described by
a set of parameters and the relations associated with the
edges are described by functions of time.

In the recent decades, the network approach became a
wide-spread method of studying complex systems. For
example, protein structure networks, in which the network
points represent proteins and the network edges represent
the distances between them, are used to describe the changes
in the development of protein complexes and in their struc-
ture, as well as to describe binding of agents or the effects
of enzymes, to an increasingly larger extent. In the recent
years, a number of computer program systems have been
introduced that are capable of building protein structure
networks based on 3D structural data, as well as analyzing
the networks that have been built up. The networks describ-
ing the interactions between the proteins (interactomes) help
a lot in understanding the molecular level mechanism of the
cellular functions and the development of diseases, and in
designing medicines. Nowadays, research into network
dynamics is essential for understanding the behavior of
complex systems.

The patent specification US 2009/0204374 deals with
modeling interactions of the several genes, proteins and the
other components of cell, applying mathematical techniques
to represent the relations between the cell components and
the manipulation of the dynamics of the cell. The object of
the system and the method described in this patent specifi-
cation is to determine whether one or more components of
a cell may be a target for interaction with therapeutic agents
in the modeled biological system. The method comprises the
steps of identifying those cellular components by simulation
that are supposed to be targets of therapeutic agents. During
the simulation, perturbations are carried out in the network
modeling the biological system by removing one or more
elements from the network, by modifying the concentration
of one or more elements or the mathematical equations
representing the interrelationships between certain elements.
After perturbation the next state of the network is deter-
mined, and based on the result of the comparison between
the subsequent states, those elements are then identified that
made an interaction with one or more therapeutic agents.

The drawback of the above method is that perturbation of
the network is carried out only in certain network points and
on the basis of this perturbation, it is only examined which
elements and which effect are made by the particular thera-
peutic agent. This method does not allow determining
through which perturbations a target state can be reached or
at least approached from an initial state with a reasonably
small error.
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It is an object of the present invention to improve the
known network analysis methods and to provide a method
for designing an intervention in a complex system by using
a network adapted for modeling the complex system and
carrying out simulations of the network. More particularly,
it is an object of the present invention to determine, in the
network that models the complex system, an excitation or a
set of excitations which transfers the complex system from
a predetermined initial state into an also predetermined
target state or into a state approximating said target state as
much as possible.

It is another object of the present invention to provide a
device for carrying out the method of the invention.

The above objects are achieved by providing a computer-
implemented method for designing intervention into the
behavior of a real complex system of technical or biochemi-
cal nature, wherein the real complex system is modeled by
a network of objects and relations between said objects,
wherein said objects of the system are represented by
network points and said relations are represented by edges
between the network points, and wherein the states of the
objects are described by a parameter set and the relations
associated with the edges are described by functions of time,
wherein the method comprises the steps of:

a) for each object of the real system, obtaining values for
each parameter of said parameter set both for an initial state
and a desired target state thereof,

b) setting the initial values and the desired target values of
the parameters of the network points,

¢) in a predetermined manner, generating an initial set of
test excitations for at least one point of the network, set
initial set of text excitations including a predetermined
number of test excitations,

d) simulating the behavior of the network by using the set
of test excitation,

e) detecting whether a termination condition in a given
simulation step is true and if so, stopping the simulation,

f) after stopping the simulation, calculating and storing,
for each network point, the difference between the parameter
values belonging to the desired target state and the parameter
values produced by the simulation,

g) based on said differences and said number of the test
excitations, generating a next set of test excitations by using
a predetermined algorithm,

h) repeating steps d)-g) until a predetermined termination
condition is satisfied,

i) from among the stored simulation results, selecting the
simulation result best matching the desired target state, and
the test set of excitations, which produced said best match-
ing simulation result, is regarded as a final excitation set
transferring the network from its initial state to its target
state, and

j) outputting the final excitation set.

Preferably, in the method the perturbations are generated
using a genetic algorithm, simulated annealing with one or
more cycles, or other metaheuristics, but it is also appreci-
ated that the perturbations are generated entirely randomly.

The above objects are further achieved by providing a
processor device for designing intervention into the behavior
of a real complex system, wherein the real complex system
is of technical or biochemical nature and modeled by a
network in which the objects of the system are represented
by network points and the interrelationships between the
objects are represented by edges between the network
points, and wherein the states of the objects are described by
a parameter set and the relations associated with the edges
are described by functions of time. The device comprises a
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data carrier adapted for storing the network structure, the
parameter values of the network points, the functions of
interactions associated with the network edges. The data
carrier further comprises a computer program for modeling
the behavior of the network. The device further comprises a
memory unit, a central processing unit electronically
coupled to the data carrier and the memory unit. The central
processing unit comprises a data input unit, a metaheuristics
unit for generating a test set of excitations by using any one
of a genetic algorithm, the simulated annealing algorithm
and any metaheuristics, a simulation unit for simulating the
network, and a comparison unit for comparing the target
state or the steady state of the simulation with the target state
of the simulation.

Finally, the above objects are achieved by providing a
non-transitory computer program product comprising com-
puter readable instructions which, when run on a computer,
cause the computer to carry out the steps of the above
method.

By using the method according to the present invention,
through specifying an initial state and a target state of the
network, the parameters of an excitation which transits the
network from a given initial state to a given target state by
using nearly the minimum number of network points (nodes)
can be determined. The resulting parameters of the excita-
tion may be, for example, identifiers of the network points
requiring an excitation, or the function, the sign, the volume,
the time period, the discontinuity, etc. of the excitations.

In the following, the invention and some of its preferred
embodiments will be described with reference to the draw-
ings, in which

FIG. 1 schematically illustrates a network model used in
the method according to the invention,

FIG. 2 depicts a flow diagram showing the main steps of
the method according to the invention,

FIG. 3 is a functional block diagram of a system for
designing intervention, used for the method according to the
invention,

FIG. 4 schematically illustrates the main components of a
processor device adapted for designing intervention and the
connectivity arrangement of said components in accordance
with the invention, and

FIG. 5 illustrates an example of how the method accord-
ing to the invention may be applied in the field of molecular
biology.

NETWORK STRUCTURE

In FIG. 1, a network model used in the method according
to the invention is schematically illustrated. The data struc-
ture of the network 100 is a special combination of an
adjacency list format known from the literature and an edge
list format, wherein a conventional edge list and a half-
adjacency list are managed together. For each edge 110 of
the network 100 (link structure), the identifiers of the two
points 120 located at the ends of the edge, as well as other
optional edge parameters are stored. In contrast with a
conventional adjacency list, wherein identifiers of the neigh-
bor network points are stored, in the network 100 used in the
method according to the invention, the identifiers of all
edges 110 connecting to a particular point (node structure)
are stored for each network point 120, together with other
optional network point parameters. Hence, since only two
network points are connected to one edge, the search for the
identifiers of the neighbor points during the simulation of the
network results in hardly any decrease of speed, while the
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parameters of the edges connecting to a given point (e.g.
edge weight) can be still searched quickly.

The data structure representing a point 120 and the data
structure representing an edge 110 both contain an identifier
of text type, by means of which a point 120 can be
unambiguously identified in the network 100, as well as an
identifier of numeric type which is equal to the position of
the given network element (point or edge) in the data array
describing the network structure. If, for example, the
numeric identifier of a point is 12, then it is stored as the 13th
element of the “node” structure of the network. Conse-
quently, numbering of the numeric identifiers (indexing)
starts from 0 and its maximum value is smaller by one than
the number of the edges. Furthermore the numeric identifiers
form a continuous sequence, i.e. below the maximum value
there is not any identifier that would belong to none of the
elements. With each of the points 120 and the edges 110, any
kind of numeric parameter (e.g. concentration, temperature,
speed, etc. for points; and an edge weight or a transfer
function for edges), or even a string parameter (e.g. experi-
mental method by means of which the given edge is
obtained) can be associated. It is to be noted that not only a
single value but also a vector of arbitrary length may be
stored as a numerical parameter, which allows, for example,
storing entire transfer functions as edge parameters.

The structure of the network 100 can change during the
simulation with the restriction that it is not allowed to delete
a point 120 or an edge 110 from the network, otherwise in
such a modified network the time functions belonging to the
period before the removal of the element becomes uninter-
pretable. However, removal of a network point or edge may
be emulated during the simulation, for example by intro-
ducing a state variable “valid”, the value of which is
different from zero only if the corresponding element was
not deleted before that time step. The parameters stored for
a network 100 are not allowed to be modified, i.e. no
parameter can be deleted and no new parameters can be
associated with the network during the simulation (more
particularly, during the currently running simulation step).
The parameters having a value that may be modified by the
simulation are stored as state variables which, in turn, may
be stored in data files described below.

Functors

Another basic data structure of the network used in the
method according to the invention is a series of functions or
a vector of functions (referred to as functor), each row of
which contains a function of time, the number of its rows
being equal to the element number of the points or the edges.
Since we primarily store the time series of the network in the
functors, a matrix storage format provides a simple and
efficient solution.

The time functions of a functor can be unambiguously
associated with the corresponding points or edges of the
network. Since the number of the time functions equals to
the number of the points or the edges of the network, such
a data series can become huge in large networks even at
short simulations, therefore it is preferred for the data series
to be directly stored on a data carrier without reading them
into memory. It is also preferred that during the simulation
one can freely select whether a time function is stored in a
row-major or a column-major order, which may significantly
improve the disc access rate in case of appropriate use.

The functors may contain the number of rows and col-
umns as metadata, that is whether they are stored in a
column-major or row-major format, and they may also
contain any supplementary text information, such as infor-
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mation on what type of system’s operation is described,
what kind of presentation is suggested etc.

Each row of a matrix contains the values a state variable
of a particular node takes during the simulation. For
example, if the simulation has a length of 1000 steps, the
500th column of the 4th row contains the value taken up by
the node No. 3 (i.e. fourth node in the series) in the step No.
499 (as the indices of the arrays start at 0).

EXAMPLE 1

energyN.cdat

01210
00012
32210

The above functor contains the time series of a simulation
of 5 steps carried out in a network containing 3 points,
wherein in each row belongs to a given point and the
subsequent values (i.e. the columns) within the series
describe the time-dependent change of the energy of the
given point. As it can be seen in the above data file, the initial
value of the node No. 3 is 3, while the initial value of the
other nodes is 0. In the following steps, the energy of node
No. 3 decreases while node No. 1 is being “charged”, i.e. its
energy increases. In the last step No. 5, the energy of node
No. 3 and node No. 1 is depleted, as it is taken over by node
No. 2.

The simulated network described by the above functor is
thus likely a directed chain in which the initial energy of
node No. 3 is transferred to node No. 2 through node No. 1.

Due to the fact that the external excitations (perturbations)
are introduced into the simulation by means of the above
mentioned data files, the simulation computations become
easier since the location and the time of any perturbation can
be unambiguously associated with a particular step of the
simulation and with a particular node of the network.

EXAMPLE 2

energyNPF.cdat

000
030
121

The above additive functor results in that the value of the
state variable “energy” taken up at node No. 2 is increased
by 3 in the second step, and the energy of node No. 3 is
increased by 1 in the first step, by 2 in the second step and
again by 1 in the third step, independently of its actual value.
The energy of node No. 1 has not changed in this case.

By using the above mentioned functors, through gener-
ating an appropriate matrix, an excitation (perturbation) with
any shape of function may be applied to any one or more
network points.

The values of the state variables taken up during the
simulation, as well as the triggering parameters and the
excitations are preferably stored in separate data files. Since
the simulation method applies the corresponding points of
the excitation functions directly to the state variables, exci-
tations with any shape and acting on any number of elements
may be generated by changing the waveforms of the func-

10

15

40

45

50

60

6

tions. The data files preferably have two specific settings.
Namely, they may be either periodical, wherein the corre-
sponding points of the excitation function are continuously
applied until the end of the simulation, or controlled by
constraints, wherein the corresponding points of the func-
tions are not added to the actual value of the state variables
but they overwrite those values.

Excitation

During the simulation each state of the network is basi-
cally characterized by the values of its state variables, i.e.
each state is associated with a particular functor, typically in
the form of a matrix. In the initial state, the length of the
functions of time of a state variable is equal to the rank of
that state variable, i.e. it is 1 if the given state variable
appears in the system equations only with its actual value; it
is 2 if the first derivative thereof also appears; it is 3 if the
second derivative thereof also appears, etc.

The excitation functions are preferably defined in a text
format, for example in the following way:

EXAMPLE 3

<ID> <wave form> <parameters>

1 dirac 0 1000
10 gauss 10 3 100
5 sine 0.1 10

In the above definition <ID> is the identifier of the
network point on which the excitation is applied, the param-
eter <wave form> is the name of plug-in the associated time
series of which is produced by a corresponding application,
and the variable <parameters> includes the parameters
required by said plug-in.

In the above example, the parameters of the function
“dirac” may be, for example, an offset (the number of the
step in which the impulse is to be applied) and an amplitude
(the size of the unit impulse), whereas the parameters of the
function “gauss” may be, for example, the p (the center of
the Gaussian curve), the p (standard deviation; the width of
the curve) and the amplitude, whereas the parameters of the
function “sine” may be for example the frequency, the
amplitude and the phase.

The excitation specified for the network (e.g. the group of
excitations defined in Example 3) may be converted into a
matrix form by using an appropriate function which pro-
duces the corresponding wave forms in numeric format (as
a time series) and fills said plurality of said time series into
the respective rows of an empty functor matrix that belong
to the corresponding network points. A 11 by 10 functor
matrix corresponding to the excitation in text format from
the above Example may, for example, be defined in the
following way:

EXAMPLE 4

0000000000
1000000000000
0000000000
0000000000
0000000000
03993-3-9-9-30
0000000000
0000000000
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-continued

0000000000
12451034 67 88 96 100

ote:
(tI:e other half of the Gaussian curve is missing since because of p =3 it would have a length
of 20 units, but it is loaded into a functor having a length of only 10 units.)

The number of the excited network points can be adjusted.
In case the generation of excitations is controlled by a
genetic algorithm, the number of the excited points is
adjusted by the genetic algorithm itself. Preferably, one can
set a range within which the number of the excited points
can vary, and one can also set the values of the excitation
parameters. This range-based definition is rather similar to
the above format but in this case, intervals are defined. The
Example 5 below describes such group of excitations.

EXAMPLE 5

1:10 Dirac 0:10 100:1000

In the above Example, the algorithm may apply an
excitation of type Dirac-delta to any one or more or even all
of the nodes No. 1-10 with offset values in the range
[0...10] and with an amplitude ranging from 100 to 1000.

Running a Simulation

How the simulation advances along time primarily
depends on the network dynamics which, however, physi-
cally depend on the properties of the modeled system,
meaning that different dynamic equations are to be used for
a social network, a biological signal transmission network or
in a network modeling the nervous system. The network
dynamics are preferably described in a DLL file which can
be easily replaced, but even the user itself may create a DLL
file which describes dynamics specifically characterizing its
own system. From the DLL file a special function PerStep is
to be exported which provides the next values of the state
variables based on their actual and the previous values.

The increased speed of the method according to the
invention results mostly from the data structure of the above
described network, which allows a search in the order O(1)
for both the edges and the points, i.e. finding the points
located at the two ends of an edge or the points adjacent to
a given point equally have a time complexity of order O(1).

Since the number of possible excitations during a simu-
lation is uncountably infinite, algorithms controlling con-
ventional searches, such as the algorithm A* cannot be used
for controlling the simulations according to the invention,
therefore metaheuristics are used. Accordingly, the
requested excitation transferring the modeled system from a
given initial state to a given target state (or to the proximity
thereof) is searched for first by generating one or more test
excitations by applying a predetermined method, e.g. ran-
domly or by using a heuristic method, and then by carrying
out a simulation on the network, in which simulation said
test excitations are used. When the so-called simulated
annealing is used in the simulation, one test excitation is
generated in every simulation step, whereas in case of
applying a genetic algorithm in the simulation, more than
one test excitation is generated in every simulation step.

When the network reaches a steady state or a predeter-
mined number of steps has been calculated during the
simulation, the differences between the parameters belong-
ing to the actual simulation state and the parameters belong-
ing to the desired target state are calculated, and then a new
test set of excitations is generated by using these difference
values and the number of the applied excitations, either as
energy values (for simulated annealing) or as fitness values
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(for genetic algorithms), wherein said test set of excitations
preferably moves the state of the system somewhat closer to
the desired target state. This iterative process is repeated
until a predetermined number of iterations is completed or
until the fitness value or the energy value decreases below a
certain threshold. From among the thus obtained best series
of excitations, the excitation with the lowest fitness or
energy value is selected and returned as the desired excita-
tion that transfers the system from its initial state to a system
state best matching the desired target state. During the
simulation it is preferred that within an arbitrarily specified
time period, the difference between the simulated state and
the desired target state is computed in every simulation
moment, and the minimum value thereof is regarded as the
final difference, i.e. there is a certain range in which the best
matching may be measured. During the simulation, the
various test excitations transfer the system into different
states, thereby how to find the best excitation is reducible
into a graph theory problem. In the field of artificial intel-
ligence, one of the most common issues deals with graph
traversal, i.e. how to find the shortest possible way within
the shortest possible time between two points of a certain
graph like a tree graph. When the points of a graph represent
the states of a complex system (e.g. a particular phase of a
molecular biological process), the conventional graph tra-
versal algorithms, such as the algorithm A*, are not suitable
for finding the best decision in a given moment. (The
algorithm A* combines the optimality of simple horizontal
graph traversal with the benefit of using heuristics to select
the likely best decision in a particular case. As a result, only
a small part of the generally extraordinarily large state
graphs, in which the number of size of the graph is an
exponential function of the number of the next possible steps
in any given step, shall be visited since generally, no one is
capable of travelling through such graphs.)

In the present case the conventional algorithms (e.g.
algorithm A*) cannot be used because the parameters of the
proposed excitation may also contain real numbers aside
from discrete values, thus the number of possibilities avail-
able in a given moment is uncountably infinite, but even in
the case of discretization, an extremely high branching
factor should be taken into account, for which the common
algorithms are not suitable at all as they are designed for
optimality. However, if an optimal solution is not an abso-
lute requirement, other algorithms could be used that result
in a “fairly good” solution regarding the possibilities. In that
case, even with a simulation using real numbers, a com-
paratively good result may be obtained even if those algo-
rithms do not guarantee to find the best possible solution or
the fastest possible solution. One of the algorithms based on
such metaheuristics is, for example, the genetic algorithm
and the simulated annealing, the latter optionally including
multiple cooling cycles.

The above mentioned metaheuristics are basically meth-
ods by means of which the global minimum of a multidi-
mensional continuous function can be determined. A com-
mon feature of these methods is that they are stochastic
wherein to find the global minimum with full certainty
requires infinite time, but they are able to find comparatively
good solutions within a finite time period.

A genetic (evolutionary) algorithm imitates the process of
natural evolution. In the course of performing the algorithm,
in a first step, a population is created from a plurality of
excitation sets in a predetermined way, for example ran-
domly or by using another heuristic method, and then these
populations are subject to competition with each other. The
aim of the competition is to approach the target state so
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closely as possible, which is measured by the fitness value.
This value is calculated in a manner that before running the
algorithm, a time window for comparison is specified. Each
step of the simulation within this time window will then be
compared to the target state, and from these steps the one
with the smallest difference between the target state and the
state of the simulation in the particular step will be selected.
The fitness value is defined as the difference between these
two states, i.e. the sum of the squares of the differences
between the state variables belonging to each network point
(consequently, a lower fitness value means a better fit). The
cost of individual excitations in an excitation set are then
added to the fitness value, said excitation costs preferably
being adjustable in advance. In case the cost of an excitation
is low, the target state can be better approximated but using
a larger number of individual excitations, while with a high
cost a lower number of excitations (interventions) are pro-
vided but the result will likely be less precise.

After calculating the fitness values the excitation series
with lower fitness values (i.e. excitation series generating
simulation states better fitting to the target state) will survive
to the next run of the competition (i.e. into the next genera-
tion) with greater likelihood.

The remaining individuals of the population will be
determined for the next simulation step by using the exci-
tations selected in the previous step in the following way. A
new individual is created from two excitation series (par-
ents) freely selected from the surviving excitation series by
crossing over and, with a certain likelihood, by mutation.

At crossing over the new individual randomly receives
one part of its excitations from one of its parents, and the
other part of its excitations from its other parent.

Additionally, the excitation series of the new individual is
modified with a predetermined likelihood (e.g. 5%) or with
a preferably adjustable likelihood (this can also be referred
to as a mutation), in course of which an excitation may be
removed, or a new excitation may be added, or the param-
eters of an existing excitation may be modified.

The generated new population is again subject to com-
petition, whereby the simulations are carried out and new
fitness values are calculated. These steps are repeated until
the minimum of the fitness value achieves a sufficiently low
value or a predetermined number of simulations have been
completed. In the following, an example on the application
of a genetic algorithm in a network having 3 points will be
described.

EXAMPLE 6

Initial state:

0

0

0

Target state:

0

3

1

Definition of the target point:

energyN 1:2 (let the target function be equal to the value
of the state variable “energy” in step No. 2 or step No. 3)

Definition of the excitation function:

0:2 dirac 0:4 0:5 (for any node, an excitation of the type
Dirac-delta with an amplitude between 0 and 5 could be
tested between the time steps 1 and 5)
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Initial population (initial group of excitations):

0 dirac 2 5, 1 dirac 3 2

1 dirac 3 1, 2 dirac 0 1

2 dirac 11, 2 dirac 2 0

From the above group of excitations the following three
functors can be produced as a perturbation matrix:

energyNPF.cdat:

-- functor of the first excitation

-- functor of the second excitation

-- functor of the third excitation

If it is assumed that the simulation is a simple constant
model in which every point keeps its given state, the first
three steps of the simulation will result the following output
matrixes:

-- first simulation step

-- second simulation step

-- third simulation step

From the above output matrices the following fitness
values (F) can be calculated:
simulation No. 1, step No. 2 (the difference between column
2 of the output matrix No. 1 and the target state is calculated
as the sum of the squares of the differences between each
element):

F=(0-0)"2+(0-3)"2+(0-1)"242CP=12

where CP is the cost of adding a perturbation, which, in the
current case, is 1, i.e. CP=1.

simulation No. 1, step No. 3 (the difference between column
3 of the output matrix No. 1 and the target state):

F=(5-0)"2+(0-3)"2+(0-1)"242CP=27

where the cost of perturbation is again CP=1.

From the above two results, the better one, namely the one
with the smaller value is selected, therefore the fitness value
of the first excitation is 12.
simulation No. 2 (the two steps are identical):

F=(0-0)"2+(0-3)"2+(1-1)"242=11

simulation No. 3:

F=(0-0)"2+(0-3)"2+(3-1)'242=15

Hence, if there are two surviving individuals for the next
generation, they will be the excitations belonging to the
simulations No. 1 and 2.

Subsequently, a missing child is then generated using the
two parents so that again three excitations will participate in
the next round of simulations:

In this case the parent excitations are as follows:

0 dirac 2 5, 1 dirac 3 2—first parent

1 dirac 3 1, 2 dirac 0 1—second parent
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After crossing over the parents, the following child exci-
tation is obtained:

1 dirac 3 1, 1 dirac 3 2

When mutation also takes place, the following child
excitation may be obtained, for example: 5

1 dirac 3 1, 1 dirac 2 2

The new population containing the mutated child excita-
tion has therefore three elements again.

The time series (output matrix) of the new excitation is:

10

0000
0023
0000

The fitness value for the second simulation step, like in
the first step, is F=12 and for the third simulation step (where
the second row of the perturbation matrix is 0 2 1):

F=(0-0)"2+(3-2)"2+(0-1)"242CP=4,

wherein CP=1.

The final fitness value is the smaller one of the results of
the two simulation steps (steps No. 2 and 3), that is F=4.

Since this value is significantly better than the previous
fitness values, this excitation will certainly be kept in the
next generation.

A key feature of the algorithm of the simulated annealing
is that a small movement is made on the search surface in
every step. In the method according to the invention it means
that a new excitation is added to the group of test excitations,
or an excitation is removed from the group, or the param-
eters of an existing excitation are slightly modified. If the
value of the function is smaller in a new position of the
search space than in the previous position, the algorithm will
enter the new position, so the new position will then be the
initial position of further search. In the method of the
invention, the value of the function corresponds to the
difference between the system state resulting from the
simulation and the desired target state, while the position of
the search space corresponds to the series of the test exci-
tations applied in the given simulation step. If the value of
the function in the new position is higher than the current
value, the new state will be discarded at a high likelihood,
but at a predetermined (small) likelihood it is still accepted
in order to avoid sticking in local minima. The exact value
of the aforementioned likelihood is controlled by an external
parameter “temperature”. In case of a high temperature, the
return to a previous position is allowed with a higher
likelihood, while at a lower temperature, the likelihood of
accepting a higher-energy position is also lower. The exact
definition of acceptance is as follows:

Pceep=€ (=1/T),

where F is the difference between the new value and the
pervious value (fitness), and T is the temperature. When the
algorithm is executed, the temperature starts from a high
value and is continuously decreased to zero. In case of a fast
decrease schedule the run time is shorter but the result is of
lower quality, while in case of a slow decrease, the compu-
tation takes a long time but the global optimum of the
simulation (which is the minimum of the fitness value in the
present case) can be approached very well. Warming/cooling
cycles may alternately be repeated, too.

In the following, an example will be described on the
application of the simulated annealing algorithm.
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In case of simulated annealing, modification of a state
corresponds to the mutation step and the calculation of

12

energy corresponds to the calculation of the fitness when
compared to the previously described genetic algorithm.

Let the target functions and the excitation definitions be
the same as in Example 6.

The first excitation is:

1 dirac32,1dirac3 1,2 dirac 11

Simulation:

0000
0003
0111

After simulation the system’s energy is:

E=12(3"2)+3

(The perfect solution is missed here because it comes too
late as the search window is 1:2. Should the search window
be 1:3, the fourth column (0 3 1) of the above excitation
matrix would result in a perfect fit, but since step No. 4 is not
within the search window, this column is disregarded.)

Neighbour state (mutation):

1 dirac32,1dirac11,2dirac 11

The result:

The system’s energy after the new simulation is:

E=7(3-1)"243,

which is accepted.
Next state:
1 dirac 3 2, 2 dirac 1 1 (one excitation has been removed)

0000
0003
0111

The system’s energy:

E=(3-0) 2+2=11,

which is worse than the previous energy value.
Acceptance  likelihood — (T=0.01): P, = (-(11-
7)/0.01)="-400=10"174~0.
Acceptance likelihood (T=1): P, = -4=0.02
Acceptance likelihood (T=10): P~ —0.4=0.67

In the above equations T represents the current value of
the temperature parameter.

Enumeration of Steady States

In a preferred embodiment of the method according to the
invention, each of the simulation rounds is run for a suffi-
ciently long time so that the network reaches its steady state,
provided that the network is capable of reaching a steady
state at all. During the execution of a set of simulations,
various techniques may be used to enumerate the steady
states of the system, but it is common for all of the available
techniques that a plurality of simulations is to be completed
and the steady states are determined at the end of the whole
simulation process. In the method of the invention, a state is
deemed steady if the state variables of all of the network
points remain within a given range of tolerance around their
final values for a given time period, or if said state variables
periodically change.
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In a preferred embodiment of the method of the invention,
the following algorithm is used for the recognition of a
periodical change of the state variables:

a) By moving backwards along the axis of time, a time point
is sought in which the value of the examined state variable
is equal to the final value of that state variable, or even if it
is different from that value, but still within a range of
tolerance.

b) If no such a time point is found, a value “false” is
provided as a return value (there is no periodical change).

¢) If such a time point is found (it is called a secondary time
point), then starting from that time point and also starting
from the time point belonging to the final value, steps are
made backwards along the axis of time and the two values
of the respective state variable are compared in every step.
d) If during moving backwards along the axis of time from
the final time point, the secondary time point is reached, then
a cycle is successtully identified and the length of the cycle
is provided as a return value (which is the time difference
between the final time point and the secondary time point).
d) The mean value calculated from all of the steps within the
cycle from the primary time point up to the secondary time
point is returned as a steady state value.

f) If in any one of the steps, the difference between the value
of the state variable belonging to the particular time point
and the final value exceeds the tolerance, the time point,
which has been previously found, is discarded and the search
for an appropriate value matching the state variable for the
final value is further continued.

g) If during moving backwards along the axis of time, a
given examination time period is over, the return value will
be again “false” (there is no periodicity).

The description of the initial and target states generally
contains the description of all state variables of the system,
but for a certain type of systems, like biological systems,
such a detailed description is not available at all. To supply
the missing status data one can use the observation that the
complex systems (like the systems modeled by the network
according to the invention) have so many constraints (such
as the relations of the network in the present case) that they
have a relatively low number of different steady states. If it
is assumed that the complex system under examination is in
the proximity of one of these steady states, the description
of the missing state variables may be filled using the state
variables of the steady state. Accordingly, when carrying out
a preferred embodiment of the method according to the
invention, an initial state functor is generated randomly (or
according to the specified “learning” algorithms), the simu-
lation is started and ran until the network has reached a
steady state. This steady state is then inserted among the
steady states that have already been determined before.

The steady states may be classified in the following way:

A steady state does not necessarily mean a state without
movement. When the system steadily makes a periodical
movement without any external intervention, it is also
regarded as a steady state. This kind of steady state is called
a limit cycle.

When more than one periodic movement is simultane-
ously present in the steady state of the system but their ratio
is irrational, the whole system is still in a steady state,
although a strictly periodical behavior cannot be identified
and therefore the system is in a quasi-periodic state. This
kind of state is called a limit torus.

The so called “strange attractor” is a special (recently
recognized) class of the steady states. In the 1980’s, it was
discovered in the field of chaos theory that certain systems
(e.g. the Lorenz-attractor) enter an aperiodic, non-self-re-
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peating, bounded and unpredictable (save for a short-term
prediction) path even without an external intervention (but-
terfly effect). Such a state can only be discovered in a
multidimensional system, like the networks according to the
invention (wherein each of the network points represents at
least one dimension), through extended observation and by
using sophisticated mathematical tools.

The above algorithm is capable of identifying the fixed
points and the limit cycles, and it is also capable of finding
certain limit tori (if only the system as a whole is in a limit
torus but the network points themselves are in limit cycles),
but may not be able to find other limit tori (when a network
point itself is also in a limit torus). The aforementioned
algorithm, however, is unable to find strange attractors.

In the method according to the invention, during the
simulation the steady states of the network (or the points
corresponding thereto in the state space, i.e. the so-called
attractors) can be found, for example, by means of the
following methods.

a) Searching for Attractors by Using a Clustering Algo-
rithm

In this method a given number of simulations are
executed and all of the steady states are stored. The steady
states are then grouped by a clustering algorithm (e.g.
XMeans, DBSCAN, OPTICS) and the center points of the
groups are regarded as the found attractors. This method
allows finding the center point of an attractor basin in the
most precise manner, provided that the system has multiple
very similar attractors.

b) Searching for Attractors in Real Time

When searching for attractors in real time, each of those
steady states which differ from the previous attractors to an
extent exceeding a given tolerance is indicated as a new
attractor. A drawback of this method is that if there are
multiple attractors in a given attractor basin, the attractor
which has been first found will be provided as a result,
instead of the true center points of the attractor basins.
However, an advantage of this method is that not only
random steps can be made, but a more directed search can
be done using the existing initial and target states. For the
search, the following options are available, for example:

1) trajectory-based search: the closer the initial state is to
the steady state, the greater step is made away from the
attractor.

ii) gradient-based search: until a new attractor is found,
the step size is increased exponentially while moving from
the preceding initial state in the direction of the gradient of
the trajectory.

The method according to the invention is particularly
suitable for use, for example, in designing targeted drugs,
wherein the initial state may be a phenotype belonging to a
given disease and the target state may be a healthy state, and
wherein the result of the network simulation is the shortest
chain of actions between the two states. The method accord-
ing to the invention allows searching for new, even person-
alized targeted therapies, as well as finding multi-target
drugs. Another field of application may be, for example, the
examination of the behavior of the connectivity system
within a social group, in which it may be established, for
example, using dynamics from the field of game theory, that
which members of a social group are mostly capable of
enhancing the cooperation within the group.

In view of the above, the method according to the
invention comprises the following main steps as illustrated
by the flow diagram shown in FIG. 2.

The method according to the invention may be used for
designing an intervention into the behavior of a real complex
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system by means of simulations, said system being modeled
by a network in which the objects of the real system are
represented by points, and the relations between the objects
are represented by edges between the network points, and
wherein the state of the objects are described by a set of
parameters and the relations associated with the edges are
described by time functions.

In the first step S200 of the method, the parameter values
belonging to an initial state of the objects of the real system
and the parameter values belonging to the desired target state
are obtained. These data may be obtained either through
measurements on the real objects of the particular system,
for example by measuring technical, social or other features
of the objects, or by reading said parameter values from one
or more databases.

In the next step S210, the initial values and the desired
target values of the parameters of the points in the network
modeling the system are set. To this end, the real parameters
of the system are mapped into parameters of the simulation
model and, if necessary, the ranges of the values of the
parameters may also be modified (e.g. limitation, extension,
discretization, etc.) so that the simulation can be performed
with the required efficiency but at a substantially higher
speed.

In the next step S220, an initial set of test excitations is
generated for at least one point of the network in a prede-
termined manner, for example randomly or by using another
heuristic method. In case of complex networks, it is typical
that the excitation of a number of points is necessary to
sufficiently approach the desired target state. The test exci-
tations are preferably described for the network in the form
as detailed above.

In step S230, using the test excitations a simulation is
executed to simulate the behavior of the network, i.e. the
network is evolved into a set of following states using the
given test set of excitations. If the network is not brought
into a positive feedback state in response to the current test
set of excitations (which may be avoided, for example, by
applying an appropriate normalization function), then in step
S240, the termination condition of the given simulation
round is detected. In a given round, a simulation may also be
run for a predetermined simulation time period, i.e. a simu-
lation time window may be defined. Alternatively, the steady
state of the network may be detected within a sufficiently
long time window. The steady state may either be a point-
like state or a periodically repeating state.

After detecting the termination condition, in step S250,
the difference between the parameter values belonging to the
desired target state and the parameter values resulting from
the simulation is calculated and stored for each network
point, and in step S260, using the difference between the
parameter values and the number of the test excitations,
another set of test excitations is generated. Generating the
next set of test excitations may be carried out, for example,
by means of a simulated annealing or a genetic algorithm as
described above in detail, or depending on the nature of the
complex systems, also by means of other metaheuristic
algorithms, or in a specific case, even in entirely random
fashion.

The steps S230 to S260 are then repeated (in step S270)
until a predetermined termination condition becomes true
when the whole simulation process is stopped. The entire
process of repeated simulations is preferably terminated
when the difference value decreases below a predetermined
threshold or when the number of iterations reaches a pre-
determined value.
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Finally, in step S280, from among the stored simulation
results the simulation result which best fits to the desired
target state is selected and the set of test excitations gener-
ating this result will be regarded as the set of excitations
transferring the network from the initial state to the target
state. Additionally, any steady states found during the simu-
lation may also be stored. The thus obtained excitation set is
then output to the user.

Alternatively, in this step multiple well-fitting sets of test
excitations are also returned as a final result of the simula-
tion.

In a preferred embodiment of the method according to the
invention, in each iteration, the steady states (as termination
conditions) possibly found in step S240 are stored, and at the
end of the design process the list of the stored steady states
and the number of simulations that were needed to reach the
steady states are all provided for the user. When listing the
steady states, every state within a certain predetermined
tolerance range is regarded as the same state.

Now the configuration and the operation of an exemplary
computer system 300 used for carrying out the simulations
in the method according to the present invention will be
described with reference to FIG. 3 which schematically
illustrates the main functional elements of the system 300
along with their interrelations.

In the system 300 the networks to be simulated could
generated by means of the module Netgen 302 on the basis
of mathematical models of complex systems. The input of
the module Netgen 302 is the definition of the type of the
network to be generated, provided in a text format (e.g.
smallworld), and additionally, any numeric parameters fur-
ther defining the network to be generated (e.g. n=1000, k=3,
p=0.1). The output of the module Netgen 302 is a data set
which appropriately describes the network for the simulation
program. The output of the module Netgen 302 is stored, for
example, in a so-called CNET file.

Another data input module is the module Nconv 304, the
input of which is the specification of a real complex network
in a foreign format, and the output of which is again the
CNET data file the simulator program can interpret.

A further data input module is the Dconv 306 that
provides the functors of the simulation excitations specified
for the network. The input of the module Dconv 306 is a
matrix in a foreign file format, and the output of which is a
functor the simulator program can interpret, said functor
being stored, for example, in a CDAT file.

Finally, yet another data input module is the module
Generate 308 that generates the output functors on the basis
of a textual description, and wherein the output functors may
also be stored in a CDAT data file.

The module Nedit 310 modifies the properties of the
network (e.g. addition or removal of parameters, such as
modification of edge weights). During its operation the
module Nedit 310 modifies the CNET file used as input for
the simulation.

The module Dedit 312 modifies the properties of the
functors (e.g. size, storage mode, special flags, such as
periodic flags) in a manner that it modifies the content of the
CDAT file serving as input for the simulation.

The module Normalize 314 primarily modifies the param-
eter values of the network in order to fulfill certain require-
ments of the simulation (particularly those of the given
simulation model). For example, it may remove, the self-
links and double edges. The module Normalize 314 modifies
the CNET data file used as input for the simulation.

The module Model 316 is, for example, a DLL file, the
function PerStep of which is called by the simulator in each
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step. The task of the module Model 316 is to calculate how
the state variables change step by step during the simulation.
Practically, this module contains the system equations in an
algorithmic form.

The module Simulate 318 functions to calculate the
time-dependent evolution of the network based on the
simulation model. Its input is a CNET file describing the
network to be simulated and a CDAT data file describing the
initial values and the possible perturbations. The module
Simulate 318 reads a corresponding CDAT data file for each
state variable. The output of the module includes a functor
(CDAT data file) for each state variable containing the time
series of the given state variable and, if the network has been
changed during the simulation, also the description of the
modified network (CNET data file). Additionally, it is pre-
ferred that the module Simulate 318 also carries out a search
for any steady states of the network, which may be needed
to stop the simulation, but knowledge of the steady states in
itself may also provide useful information for designing
further interventions, for example.

The module Calculate 320 functions to calculate various
measurement values from the simulation time series. Its
input is a CDAT data file containing the time series of the
simulation and its output is the given measurement value,
preferably in a text format.

The module Turbine viewer 322 is a separate program
module that is capable of graphically displaying both the
networks and the data.

The module Designer 324 includes the metaheuristics, i.e.
the simulated annealing or the genetic algorithm. For
example, when the excitation sets are generated by a genetic
algorithm, this module determines the next excitation popu-
lation to be tested from the previous excitation populations
and their fitness values, all having received as an input.

The module Fitness 326 calculates a fitness value for a
certain excitation set from the simulation results. Its input
includes the time series of the simulation and the target state
(with its definition).

The module Design 328 constitutes a simulation frame-
work that iteratively runs the simulator and calls the func-
tions of the module Designer 324 and the module Fitness
326 at the beginning and at the end of the simulation rounds.

In the above described system 300, only the data files
describing the network are preferably stored in the memory
of the computer, and any other data required for the simu-
lation are stored separately on a data carrier, to/from which
data can be directly written/read during the simulation, thus
much larger networks than ever before may be analyzed in
this way. The speed of the simulation may be further
increased by “smoothing” the network in the memory by
means of a special internal algorithm, i.e. the physical
storage locations of the network points interconnected by
edges are as close to each other as possible, thus the memory
access rate of the graphics card, which is usually a critical
feature, may be further increased.

The above simulation system 300 may be completed with
a multi-purpose distribution algorithm, by means of which
several subsequent simulations can be allocated in a highly
scalable manner, for example, to one or more processors
within one computer, to each of the computers of a super
computer system, or to a grid including a plurality of
computers, for example by using a framework such as
BOINC or TORQUE. These all allow fast and repeated
simulations of large networks, thus beyond the aforemen-
tioned methods, the simulation system may also be used as
a search function of other artificial intelligence algorithms.
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In another aspect of the invention a processor device is
provided for carrying out the method according to the
invention. The main components of the device and their
connectivity arrangement are illustrated in FIG. 4.

As shown in FIG. 4, the device according to the invention
is a processor device 400, preferably a computer, configured
to design interventions into the behavior of complex sys-
tems. The complex system is modeled by a network in which
the objects of the system are represented by network points
and the relations between the objects are represented by
edges between the network points, and wherein the states of
the objects are described by a parameter set and the inter-
actions associated with the edges are described by functions
of'time. The device 400 comprises a data carrier 402 adapted
for storing the network structure, the parameter values of the
network points, the functions of interactions associated with
the network edges, and the computer program modeling the
behavior of the network. The device 400 further comprises
a memory unit 404 and a processor-based central processing
unit 406 electronically coupled to both the aforementioned
data carrier 402 and the memory unit 404. The central
processing unit comprises a data input unit 408, a meta-
heuristics unit 410 for generating a test set of excitations, a
simulation module 412 and a comparison module 414 for
comparing the target state of the simulation with the target
state or the steady state of the simulation. More particularly,
the method according to the invention is carried out by an
intervention design unit 416 comprising the metaheuristics
unit 410, the simulation module 412 and the comparison
module 414. The data input unit 408 may include, for
example, the functions of the data input modules 302, 304,
306, 308 shown in FIG. 3. The metaheuristics unit 410 may
include, for example, the functions of the module Designer
324 shown in FIG. 3. The simulation module 412 may
include, for example, the functions of the module Simulate
318 shown in FIG. 3. The comparison module 414 may
include, for example, the functions of the module Fitness
326 shown in FIG. 3.

In a third aspect of the invention, the present invention
also relates to a computer program product comprising
computer readable instructions which, when run on a pro-
cessor device, such as a computer, cause the processor
device to carry out the method according to the invention.
The above mentioned computer program product may be
stored, for example, on the data carrier 402 of the above
processor device 400 or it can be loaded into the memory
unit 404 thereof.

A Dbeneficial application of the invention design in a
network of interactions between proteins is illustrated in
FIG. 5. The network used in this example, which was
published in 2011, constitutes the signal transmission net-
work of a leukemic leukocyte (cytotoxic T-cell). Normally,
after prolonged activation such a cell should kill itself so that
harmful autoimmune processes could be avoided. This state
is shown on the right side of FIG. 5. With a special type of
leukemia (LGL), however, the above process does not take
place but instead, a continuously proliferating cell form
remains alive after activation, as shown on the right side of
FIG. 5. The presence of cells in such a state significantly
damages the most types of tissue, including the correctly
operating leukocytes as well, thereby causing the symptoms
of'leukemia. The aim of the intervention to be designed is to
change the state of the diseased cells, shown on the left side
of FIG. 5, to a healthy state, shown on the right side of the
figure. The accepted ways of interventions include either the
activation or the inhibition of the proteins in the network,
with the restriction that only those forms of intervention are
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allowed where a corresponding treatment is available
according to the database DrugBank dated Dec. 11, 2013.
For designing the intervention the genetic algorithm-based
search engine was used. The parameter space of the search
was defined as follows:

statusN+tlgl-druggable-ids.txt#ID dirac —1(ID=+tlgl-inhib-
itable-ids.txt); 1(ID=+tlgl-activatable-ids.txt) 0:1:10

i.e. excitations of the type Dirac-delta with integer time steps
ranging from O to 10 for the identifiers of proteins that can
be treated with drugs, by applying an amplitude of 1 in case
of an activatory drug and -1 in case of an inhibitory drug,
according to the mode of action of the corresponding drug.

After running the program, the following list of excita-
tions was obtained:

22 dirac -1 2.000000

4 dirac -1 0.000000
which corresponds to the inhibition of PDGFR (ID 4, step
No. 0 (first step)) and the inhibition (-1) of NF-xB (ID 22,
step No. 2, (third step)). According to the data base Drug-
Bank, the applicable drugs are for example Sunitinib or
Pazopanib for PDGFR, and for example Triflusal, Thalido-
mide or Pranlukast for NF-kB.

Since only those interventions were selected that corre-
spond to targets of clinically validated medicines, the effi-
cacy of each of the separate interventions is well supported.
However, it is to be noted that the obtained intervention sets
should not be applied without a clinical validation of the
joint effect of the interventions because of the possible error
of modeling and possible non-described interactions of the
used drugs.

The invention claimed is:

1. A computer-implemented method for designing inter-
vention into the behavior of a real complex system of
biochemical nature, the method comprising:

a) modeling the real complex system by a network of
objects and relations between said objects, wherein said
objects of the system are represented by network points
and relations are represented by edges between the
network points, and wherein the states of the objects are
described by a parameter set and the relations associ-
ated with the edges are described by functions of time;

b) for each object of the real system, obtaining values for
each parameter of said parameter set both for an initial
state and a desired target state thereof;

¢) setting the initial values and the desired target values of
the parameters of the network points;

d) using a predetermined metaheuristic algorithm, auto-
matically generating an initial set of test excitations for
at least one point of the network, the initial set of test
excitations including a predetermined number of test
excitations defined by the metaheuristic algorithm;

e) simulating the behavior of the network by using the set
of test excitations;

f) detecting whether a simulation termination condition in
a given simulation step is true and if so, stopping the
simulation;

g) after stopping the simulation, calculating and storing,
for each network point, the difference between the
parameter values belonging to the desired target state
and the parameter values produced by the simulation;

h) automatically generating a next set of test excitations
by using the predetermined metaheuristic algorithm,
the next set of test excitations being generated to more
closely approach the target state based on the previous
test excitations having the smallest difference between
the parameter values belonging to the desired target
state and the parameter values produced by the simu-
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lation, and the number of text excitations in the next set
being defined by the metaheuristic algorithm;

1) iteratively repeating steps e)-h) to reduce the difference
between the parameter values produced by the simu-
lations and the parameter values of the target state until
a predetermined entire termination condition is satis-
fied;

j) from among the stored simulation results, selecting the
simulation result best matching the desired target state,
the test set of excitations which produced said best
matching simulation result is regarded as a final exci-
tation set transferring the network from its initial state
to its target state; and

k) outputting the final excitation set as the intervention
into the behavior of the real complex system of bio-
chemical nature.

2. The method according to claim 1, wherein the initial
values and the desired target values of the parameters of the
objects are determined by measurements on the objects.

3. The method according to claim 1, wherein the initial
values and the desired target values of the parameters of the
objects are read from a database.

4. The method according to claim 1, wherein a simulation
time window is defined in advance and the simulation
termination condition is regarded satisfied if within a suffi-
ciently long time window, a steady state of the network is
detected.

5. The method according to claim 4, wherein the resulting
steady states are stored, and wherein the method further
comprises outputting a list of the stored steady states and the
number of simulations reaching each steady state.

6. The method according to claim 5, wherein all of the
states within a specific tolerance range are regarded as the
same state.

7. The method according to claim 1, wherein the prede-
termined entire termination condition comprises obtaining a
difference value between the parameter values belonging to
the desired target state and the parameter values produced by
the simulation that is below a predetermined threshold.

8. The method according to claim 1, wherein the prede-
termined entire termination condition comprises reaching a
predetermined number of simulation iterations.

9. The method according to claim 1, wherein the meta-
heuristic algorithm is a genetic algorithm, the number of test
excitations is more than one per simulation, a fitness value
for each simulated set of test excitations is calculated by the
difference between the parameter values belonging to the
desired target state and the parameter values produced by the
simulation, and the next set of test excitations is generated
from the sets of test excitations having the best fitness values
by crossing over and/or mutation.

10. The method according to claim 1, wherein the meta-
heuristic algorithm is a simulated annealing algorithm, the
number of test excitations is one per simulation, and an
energy value for each simulation iteration is calculated by
the difference between the parameter values belonging to the
desired target state and the parameter values produced by the
simulation.

11. The method according to claim 1, wherein the inter-
vention is a targeted drug, the real complex system of
biochemical nature is a cell, the initial state is a phenotype
belonging to a particular disease, the target state is a healthy
state, and the final excitation set comprises the shortest chain
of actions between the initial state and the target state.

12. A processor device for designing intervention into the
behavior of a real complex system of biochemical nature, the
device comprising:
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a data carrier storing a model of a real complex system of
a biochemical nature, the model comprising a network
of objects represented by network points and relations
between the objects being represented by edges
between the network points, wherein the states of the
objects are described by a parameter set and the rela-
tions associated with the edges are described by func-
tions of time;

a processor device; and

a memory device encoding instructions that, when run on
the processor device, cause the processor device to:
(a) obtain values for an initial state and a desired target

state for each parameter of the parameter set for each
object;

(b) set the initial values and the desired target values of
the parameters of the network points;

(c) automatically generate an initial set of test excita-
tions for at least one point of the network, the initial
set of test excitations having a number of test exci-
tations selected using a predetermined metaheuristic
algorithm;

(d) simulate behavior of the network using the set of
test excitations;

(e) stop the simulation when a simulation termination
condition in a given simulation step is detected;

(f) after the simulation is stopped, calculate and store
the differences between the parameter values belong-
ing to the desired target state and the parameter
values produced by the simulation for each network
point;

(g) automatically generate a next set of test excitations
selected to more closely approach the target state
based on the previous test excitations having the
smallest differences by using the predetermined
metaheuristic algorithm;

(h) iteratively repeating steps (d)-(g) until a predeter-
mined termination condition is satisfied;

(1) from among the stored simulation results, selecting the
simulation result best matching the desired target state,
the test set of excitations which produced said best
matching simulation result is regarded as a final exci-
tation set transferring the network from its initial state
to its target state; and

(j) outputting the final excitation set as the intervention
into the behavior of the real complex system of bio-
chemical nature.

13. The processor device of claim 12, wherein the inter-
vention is a targeted drug, the real complex system of
biochemical nature is a cell, the initial state is a phenotype
belonging to a particular disease, and the target state is a
healthy state.

14. A non-transitory computer program product compris-
ing computer readable instructions which, when run on a
computer, cause the computer to:

a) model a biochemical system with a network of objects
represented by networks points and relations between
the objects represented by edges between the network
points, wherein the states of the objects are described
by a parameter set and the relations associated with the
edges are described by functions of time;
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b) for each object of the biochemical system, obtain
values for each parameter of the parameter set for an
initial state and a desired target state thereof;

c) set the initial values and the desired target values of the
parameters of the network points;

d) automatically generate an initial set of test excitations
for at least one point of the network using a predeter-
mined metaheuristic algorithm, the initial set of test
excitations including a predetermined number of test
excitations defined by the metaheuristic algorithm;

e) simulating the behavior of the network using the set of
test excitations;

f) detect whether a simulation termination condition in a
given stimulation step is true and if so, stop the
simulation;

g) after the simulation is stopped, calculate and store, for
each network point, the difference between the param-
eter values belonging to the desired target state and the
parameter values produced by the simulation;

h) based on the differences and number of test excitations,

automatically generate a next set of test excitations

using the predetermined metaheuristic algorithm, the
next set of test excitations being generated to more
closely approach the target state based on the previous
test excitations having the smallest difference between
the parameter values belonging to the desired target
state and the parameter values produced by the simu-
lation, and the number of text excitations in the next set
being defined by the metaheuristic algorithm;

iteratively repeat steps e)-h) to reduce the difference
between the parameter values produced by the simu-
lations and the parameter values of the target state until

a predetermined termination condition is satisfied;

j) from among the stored simulation results, select the
simulation result best matching the desired target state,
where the test set of excitations which produced the
best matching simulation results is regarded as a final
excitation set transferring the network from its initial
state to its target state; and

k) outputting the final excitation set as a designed inter-
vention into the biochemical system.

15. The computer program product of claim 14, wherein
the biochemical system is a cell, the initial state corresponds
to a phenotype of a given cell type, and the target state is
either a healthy or an apoptotic state.

16. The method according to claim 14, wherein the
metaheuristic algorithm is a genetic algorithm and a fitness
value for each simulation iteration is calculated by the
difference between the parameter values belonging to the
desired target state and the parameter values produced by the
simulation.

17. The method according to claim 14, wherein the
metaheuristic algorithm is a simulated annealing algorithm
and an energy value for each simulation iteration is calcu-
lated by the difference between the parameter values belong-
ing to the desired target state and the parameter values
produced by the simulation.
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