
User Guide
to the ModuLand program package

(Version 1.2; June 2010)

(An algorithm package for the determination of a hierarchical
community structure of networks with adjustable overlaps)

Brief overview of the method family ... 2
Network data .. 4

Networks provided in the program package .. 4
Converting Pajek net network data to the cxg format with pajek_conv 4
Converting network data in edgelist format to cxg format .. 4

Influence function calculation and community landscape construction methods.................. 5
The NodeLand and LinkLand methods.. 5
The PerturLand method.. 5
The EdgeWeight method.. 5

Module identification and module membership assignment methods 6
The ProportionalHill and TotalHill methods ... 6
Ordered version of the ProportionalHill and TotalHill methods.. 6
Extracting module membership data.. 7

Merging strongly correlated modules .. 7
Determining the module-module correlation matrix.. 7
Creating a list of module groups to be merged .. 8
Merging the correlated groups of modules .. 8

Higher level networks .. 9
Creating a higher level network ... 9
Projecting module assignment of higher levels to the original network 9
Extracting projection data .. 10

Examples .. 11
A complete example... 11
An example for merging strongly correlated groups of modules..................................... 12

Appendix: VirtualBox image for running the ModuLand programs 13
Setting up VirtualBox and the ModuLand Image .. 13
Getting started with the ModuLand Image .. 14
Sharing a folder between your computer and the virtual computer 15
Stopping the Virtual Computer .. 15

 1

Brief overview of the method family
This User Guide describes the use of the algorithms of the ModuLand method family for
uncovering overlapping modules. The ModuLand method family includes the following main
steps (for more details see the related Manuscript and its Supplementary Material
downloadable from HERE):

0. Converting the network data to the input format of the current implementation
1. Calculation of influence functions
2. Construction of the community landscape
3. Identifying modules and assigning elements and links of the network to modules.

For each step, a choice of methods is available to use. Though the algorithms we describe in
this User Guide are both generally applicable and effective, we would like to note that each
step of the process may be optimized further to the unique properties of the network. We offer
appropriate clues for this optimization process in the Supplementary Material downloadable
from HERE.

In our current implementation, networks are stored in cxg format, which is a custom binary
format for the effective storage of network elements, links and their various attributes. We
provide the pajek_conv tool to convert Pajek net files to cxg files.

In the applications we offer the NodeLand, LinkLand, PerturLand and EdgeWeight
(NoLand) influence function calculation methods, where steps 1 and 2 of the ModuLand
method family have been merged. These influence function calculation methods take the
network input data in cxg format, and directly output the community landscape data in a cxl
format.

Step 3 may be performed using either the ProportionalHill or the TotalHill module
assignment methods. These methods take both the original network topology data in the cxg
format and the community landscape data in the cxl file as inputs, and output the module
membership assignment matrix of network elements in a cxb format.

Additional implemented “ordered” versions of the ProportionalHill and the TotalHill
programs are available, which differ from the original versions in that they output modules in
the same order, that is module i of the ordered ProportionalHill output will correspond to
module i of the ordered TotalHill output, while this was not the case for the non-ordered
versions. This additional ordering property is useful for merging strongly correlated modules.

Optionally, the next level of the hierarchical representation of network modules – where the
original modules became the elements – can be constructed using the NewLevel method,
which requires the cxg, cxl and cxb input data, and outputs the network topology of the new
level as a cxg file.

Please note that a Linux/x86 compatible operating system is required for running the programs
provided in the ModuLand program package. If you do not have access to such a system, you
may use a prebuilt VirtualBox image of a Linux system with all necessary programs (please see
the Appendix of this manual for instructions to use the VirtualBox image).

 2

http://www.linkgroup.hu/modules.php#manuscript
http://www.linkgroup.hu/modules.php#manuscript

The following flowchart summarizes the different phases and possible options of the
ModuLand algorithm package. Cylinders represent data storage options, while boxes
represent different operations. Box captions refer to the name of the operation, while the name
in parentheses refers to the executable program name as found in the ModuLand program
package.

 3

Network data
Networks provided in the program package
We provide the network data we have analyzed in the related manuscript downloadable from
HERE: in both cxg and Pajek net format. The following networks can be found in the
networks/ directory of the program package:

1. Word association network
2. School-friendship network
3. Electrical power-grid of the USA
4. Yeast protein-protein interaction network
5. Network science collaboration network
6. Zachary karate club social network

For the detailed description of these networks see Section I. of the Supplementary Information
downloadable from HERE.

Converting Pajek net network data to the cxg format with pajek_conv
After installing the programs of the enclosed program package downloadable from HERE,
you can use the pajek_conv program to convert the network topological parameters in the
Pajek net format to the cxg files used by the ModuLand method family by issuing the
following command:
pajek_conv mynet.net mynet.cxg

where mynet is the name of the network file you have selected. You can inspect and verify
the output by looking at the content of the cxg file using the program of cpxext_cat by issuing
the command:
cpxext_cat mynet.cxg | head

Converting network data in edgelist format to cxg format
After installing the programs of the enclosed program package downloadable from HERE,
you can use the edge2net.sh program to convert an undirected edgelist to Pajek net format,
and then use the pajek_conv program to convert the network topological parameters in the
Pajek net format to the cxg files used by the ModuLand method family by issuing the
following commands:
edge2net.sh mynet.edgelist mynet.net

pajek_conv mynet.net mynet.cxg

where mynet is the name of the network file you have selected. You can inspect and verify
the output by looking at the content of the cxg file using the program of cpxext_cat by issuing
the command:
cpxext_cat mynet.cxg | head

The edgelist file is assumed to have two integers per line separated with a whitespace
character, where the integers refer the node numbers, starting from either zero or one.

 4

http://www.linkgroup.hu/modules.php#manuscript
http://www.linkgroup.hu/modules.php#supplementary
http://www.linkgroup.hu/modules.php#programs
http://www.linkgroup.hu/modules.php#programs

Influence function calculation and community landscape
construction methods
You may use the provided algorithms describing the implementation of the NodeLand,
LinkLand or PerturLand methods to determine the community landscape of your network.
Alternatively, you may use the EdgeWeight method, if you simply want the community
landscape heights to be the link weights of the original network. The EdgeWeight method is
also useful for the inclusion of any of the community landscape determination methods you
wish to try in the ModuLand method family framework.

The NodeLand and LinkLand methods
After installing the programs of the enclosed program package downloadable from HERE,
you can execute the NodeLand or LinkLand methods by issuing the following commands:
nodeland -0 mynet.cxg mynet.cxl

or
linkland -0 mynet.cxg mynet.cxl

where mynet is the name of the network file you have selected. The nodeland or linkland
programs take the cxg format network data as input, and output the community landscape data
to the cxl file. The -0 (minus zero) switch prevents the programs to write detailed influence
function data to the output cxl file.

The PerturLand method
After installing the programs of the enclosed program package downloadable from HERE,
you can execute the PerturLand method by issuing the following command:
perturland mynet.cxg <X> <higher level: 0/1> mynet.cxl

where mynet is the name of the network file you have selected. The program takes the cxg
format network data as input, and outputs the community landscape data to the cxl file. The
<X> parameter describes the attenuation of the information perturbation during the
propagation process. <X> can be in the range of [0;1]. The higher the value of X, the smaller
the attenuation of the perturbation is spreading in the network (for details see Section IV. 2. of
the Supplementary Information downloadable from HERE). The <higher level: 0/1>
parameter can be set either 0 or 1, telling the program, if the supplied network is an original
network [<higher level: 0/1> = 0] or any higher level of the network hierarchy constructed by
the ModuLand method [<higher level: 0/1> = 1], respectively. In the latter case, the X
parameter has no effect (for explanation of this see Section IV. 2. of the Supplementary
Information downloadable from HERE).

The EdgeWeight method
After installing the programs of the enclosed program package downloadable from HERE,
you can execute the EdgeWeight method by issuing the following command:
edgeweight --in mynet.cxg --out mynet.cxl

where mynet is the name of the network file you have selected. The program takes the cxg
format network data as input, and outputs the community landscape data to the cxl file. In the

 5

http://www.linkgroup.hu/modules.php#programs
http://www.linkgroup.hu/modules.php#programs
http://www.linkgroup.hu/modules.php#supplementary
http://www.linkgroup.hu/modules.php#supplementary
http://www.linkgroup.hu/modules.php#programs

cxl data the link weights of the original network become the community landscape heights of
the links.

For networks of higher hierarchical levels the EdgeWeigth method should be used as
influence function construction method (for explanation of this see Section VII. 2. of the
Supplementary Information downloadable from HERE).

You can also supply your own community landscape data by writing the community
landscape heights to a Pajek net file as link weights, using pajek_conv and finally the
EdgeWeight program to assemble the community landscape data in cxl format.

Module identification and module membership assignment methods

The ProportionalHill and TotalHill methods
The ProportionalHill and TotalHill module membership assignment programs take the cxg
format network data and the cxl format community landscape data as inputs, and output the
module membership assignment matrix of the network elements in a cxb format.

After installing the programs of the enclosed program package downloadable from HERE,
you can execute the ProportionalHill or TotalHill method by issuing the following commands:
prop mynet.cxg mynet.cxl mynet.cxb H

or
total_lowmem --no-edge-belong -m 900 mynet.cxg mynet.cxl mynet.cxb

where mynet is the name of the network file you have selected. The H parameter of the
ProportionalHill program ensures that the module membership assignment vectors of the
network links will be normalized to the community landscape height of the links. Note: One
could substitute ‘1’ or ‘W’ instead of ‘H’ in order to normalize the module membership
assignment vector of any given link either to the sum of one or to the sum of the original
weight of the given link (‘W’), respectively.

The --no-edge-belong parameter of the TotalHill program prevents writing the module
membership assignment vectors of the links to the output cxb file – it is advised to use this
option, as the assignment vectors of links are not required in later steps and their inclusion
would needlessly enlarge the output file size. The -m 900 parameter instructs the program not
to use more than 900 Megabytes of memory. Select this number according to the available
memory of your computer, where half of the total free memory may be a safe choice.

Ordered version of the ProportionalHill and TotalHill methods

The versions denominated as ordered differ from the previously described program versions
in that they output network modules in the same order, making module i of the ordered
ProportionalHill output will correspond to module i of the ordered TotalHill output, while this
was not the case for the non-ordered versions. This ordering property is useful for merging
strongly correlated modules (see the section “Merging strongly correlated modules”). The

 6

http://www.linkgroup.hu/modules.php#supplementary
http://www.linkgroup.hu/modules.php#programs

implementation of the ordered ProportionalHill program have also received significant speed-
up.

After installing the programs of the enclosed program package downloadable from HERE,
you can execute the ordered version of the ProportionalHill or TotalHill method by issuing
the following commands:
ordered_prop mynet.cxg mynet.cxl mynet.cxb H noedge

or
ordered_total_lowmem --no-edge-belong -m 900 mynet.cxg mynet.cxl mynet.cxb

where the parameters are the same as for the original versions described above. The only
addition is the new optional “noedge” parameter of the ordered_prop program which has the
same effect as the --no-edge-belong parameter of the total_lowmem (and
ordered_total_lowmem) programs, preventing writing the module membership assignment
vectors of the links to the output cxb file – it is advised to use this option, as the assignment
vectors of links are not required in later steps and their inclusion would needlessly enlarge the
output file size.

Extracting module membership data
While the function library for directly manipulating the cx* files of the ModuLand program
package (such as reading or writing their content) is not available yet, you can use the mm.sh
script in combination with the cpxext_cat tool provided in the enclosed program package
downloadable from HERE to extract the module membership assignment matrix from a cxb
file by executing the following command:
cpxext_cat mynet.cxb | mm.sh > module_node_mat.txt

where mynet is the name of the network file you have selected. The mm.sh script utilizes the
standard GNU Awk program available in standard Linux distributions. The
module_node_mat.txt output file will contain as many rows as the number of network
modules, with as many comma-separated float values in each row as the number of network
elements. The float value in row i and column j of the module_node_mat.txt output file is
the membership strength of element j in module i.

Merging strongly correlated modules
Determining the module-module correlation matrix

When applying the PeakHill based ProportionalHill or TotalHill module membership
assignment methods on a ‘noisy’ community landscape, each local maxima will result a new
separate (and possibly highly overlapping) module. Therefore it can be useful to apply a
simple yet effective post-processing step for merging the groups of extremely overlapping
modules. To this end the first step is determining the similarity, or correlation between any
two modules.

To determine the module-module correlation matrix based on the .cxb output of a given
module membership assignment method, first you have to convert that output into a textual
matrix form using the mm.sh script as seen in the previous section. Assuming that the name
of the textual matrix file is module_node_mat.txt, perform the following steps:

 7

http://www.linkgroup.hu/modules.php#programs
http://www.linkgroup.hu/modules.php#programs

ln -s module_node_mat.txt mat.tmp

scor.sh

rm mat.tmp

where the ln -s Linux command creates an alias of the textual matrix file, calling the alias
“mat.tmp”. This is required because the scor.sh script expects its input file to be named
“mat.tmp”. Then the scor.sh script calculates the module-module correlation matrix and
writes it into an output file named scor.mat. Internally the scor.sh script utilizes the R
statistical program to execute the calculations. After this, the rm command erases (removes)
the alias because it is no longer needed.

Now optionally a histogram can be created to picture the relative frequency of module-
module correlation values using the following command:

dohist.sh

which takes the scor.mat file as input and creates the hist.pdf file as output, which can be
viewed with a standard pdf viewer.

Creating a list of module groups to be merged
Once the scor.mat file described in the previous section is available, execute the
spearmerge.py script using:

spearmerge.py scor.mat 0.9 full > merge_list.txt

where 0.9 is the correlation threshold above which groups of modules will be merged and the
parameter “full” denotes that the output should list not only module groups to be merged, but
also individual modules which are left intact. The name of the output file is merge_list.txt in
this example, and contains a group of modules to be merged per line, each module denoted by
its number, starting from zero.

Merging the correlated groups of modules
Having the merge_list.txt file prepared as the end of the process described in the previous
section, the groups of modules can actually be merged by the command:

modmerge mynet.cxb merge_list.txt mynet_merged.cxb

where mynet.cxb is a module membership assignment data file for the given network and
mynet_merged.cxb is the output module membership assignment data file with the groups of
modules listen in merge_list.txt merged.

Note that it is possible to merge module membership assignment data produced by the
ordered TotalHill method based on the module-module correlation data resulting from
processing the ordered ProportionalHill module membership assignment data. The reason
why one would want to do this is that the excessive amount of module-module overlap

 8

produced by the TotalHill method results in excessive module-module correlations, which
makes it hard to determine a feasible correlation threshold based on this data alone.

Higher level networks
Creating a higher level network
It is possible to create a higher level network based on the overlapping module information of
the original network: Modules of the original network will be the elements of the new
network, and the links between the elements of the new network will represent the overlaps
between the modules of the original network.

The NewLevel program determining the immediate next level of the hierarchical network
structure defined by the above definition takes the cxg format network topology data, the cxl
format community landscape data and the cxb format module membership assignment matrix
as inputs, and outputs the higher level network topology data to a cxg format data file.

After installing the programs of the enclosed program package downloadable from HERE,
you can execute the NewLevel method by issuing one of the following commands:
newlevel mynet.cxg mynet.cxl mynet.cxb mynet-1.cxg

or
newlevel --threshold Y mynet.cxg mynet.cxl mynet.cxb mynet-1.cxg

where mynet is the name of the network file you have selected. The second way of execution
differs in supplying the additional --threshold Y parameter, where Y is a percentage-like
number between 0.0 and 100.0. By default, this Y threshold parameter is set to zero, meaning
that even the smallest overlaps between the modules of the original network are taken into
account, which may result a network at the immediate next level of the hierarchy with as
many as M2 links, where M is the number of modules of the original network, if the module
overlaps have been very extensive. The inclusion of a non-zero Y threshold value (in
percentage) will cause that the value of all components of those module membership
assignment vectors will be set to zero, which do not reach the Y threshold percentage of the
sum of all components. In case of a non-zero Y threshold parameter the calculation of
modular overlaps takes place only after the pruning step described here. It is especially
advised to use at least a small value of the Y parameter, e.g. 0.1%, or 1%, if the module
membership assignment matrix has been determined using the TotalHill method, which
results in extensive and detailed overlaps of the network modules. After determining the
modules of both the original and any hierarchy levels of the higher level networks the module
membership assignment data will be stored in the mynet.cxb, mynet-1.xcb, ..., mynet-k.cxb
files, respectively, where mynet is the name of the network file you have selected, and k
refers to the number of the highest level of the hierarchy you wanted to determine (obviously
this should be at least one level below the highest level of the hierarchy, where all modules of
the original network are represented by a single element).

Projecting module assignment of higher levels to the original network
After determining the modules of both the original and any hierarchy levels of the higher level
networks and storing the module membership assignment data in the mynet.cxb, mynet-
1.xcb, ..., mynet-k.cxb files, respectively, you can project the module membership
assignment of any intermediate level i (0 ≤ i ≤ k) or even back to the original 0 level by

 9

http://www.linkgroup.hu/modules.php#programs

executing the following command (after installing the programs of the enclosed program
package downloadable from HERE):
projector mynet.cxb mynet-1.cxb [...] mynet-i.cxb mynet-0-i.cxp

where mynet is the name of the network file you have selected. The output file, mynet-0-
i.cxp contains the module membership assignment data of the elements of the original
network assigned to the modules of the network hierarchy level i.

Extracting projection data
Similarly to the extraction of the module membership assignment data from cxb format files
described earlier, you can use the mm_proj.sh script provided in the program package
downloadable from HERE in combination with the cpxext_cat tool to extract the module
membership assignment matrix from a cxp file containing the module membership
assignment data of the higher hierarchical level projected to the original network elements by
executing the following command:
cpxext_cat mynet-0-i.cxp | mm_proj.sh > module_node_mat.txt

where mynet is the name of the network file you have selected. The mm_proj.sh script
utilizes the standard GNU Awk program available in standard Linux distributions. The
module_node_mat.txt file will contain as many rows as the number of network modules on
network level i, with as many comma-separated float values in each row as the number of
network elements in the original network. The float value in row j and column k of the
module_node_mat.txt output file is the membership strength of element k in module j at
network level i.

 10

http://www.linkgroup.hu/modules.php#programs
http://www.linkgroup.hu/modules.php#programs

Examples
A complete example
In this example, we will convert an original network data in a Pajek net format to a cxg
format, determine the modules of the original network, create the immediate next layer of the
higher level networks, determine the modules of this immediate next layer of the higher level
networks, and finally project the modules of the immediate next higher level network to the
elements of the original network.
pajek_conv mynet.net mynet.cxg

nodeland -0 mynet.cxg mynet.cxl

total_lowmem --no-edge-belong -m 900 mynet.cxg mynet.cxl mynet.cxb

cpxext_cat mynet.cxb | mm.sh > module_node_mat-0.txt

newlevel --threshold 0.1 mynet.cxg mynet.cxl mynet.cxb mynet-1.cxg

edgeweight --in mynet-1.cxg --out mynet-1.cxl

total_lowmem --no-edge-belong -m 900 mynet-1.cxg mynet-1.cxl mynet-1.cxb

projector mynet.cxb mynet-1.cxb mynet-0-1.cxp

cpxext_cat mynet-0-1.cxp | mm_proj.sh > module_node_mat-0-1.txt

After the execution of all the above commands, the results of the modular analysis will be in
the following files:

o mynet.cxg: network topology in the cxg format

o mynet.cxl: community landscape data in cxl format

o mynet.cxb: module membership data in cxb format

o module_node_mat-0.txt: module membership data in standard text format

o mynet-1.cxg: hierarchical level 1 network topology in the cxg format

o mynet-1.cxl: hierarchical level 1 network community landscape data in cxl format

o mynet-1.cxb: hierarchical level 1 network module membership data in cxb format

o mynet-0-1.cxp: module membership data as projected from the modules of the level 1
network to nodes of the original network, in cxp format

o module_node_mat-0-1.txt: projected module membership data in standard text format.

 11

An example for merging strongly correlated groups of modules
This example takes a Pajek .net network dp2.net as input, converts it to .cxg format,
constructs a LinkLand-based community landscape, determines both the ordered
ProportionalHill and the ordered TotalHill module membership assignment data, and merges
the modules of the TotalHill module membership assignment data based on the strongly
correlated modules of the ProportionalHill module membership assignment data. Finally, it
prints the number of modules before and after the merger.

pajek_conv dp2.net dp2.cxg

linkland -0 dp2.cxg dp2.cxl

ordered_prop dp2.cxg dp2.cxl dp2_fps.cxb H noedge

ordered_total_lowmem --no-edge-belong -m 128 dp2.cxg dp2.cxl dp2_ts.cxb

cpxext_cat dp2_fps.cxb | mm.sh > mat_fps.txt

ln -s mat_fps.txt mat.tmp

scor.sh

rm mat.tmp

dohist.sh

spearmerge.py scor.mat 0.9 full > merge_list_fps_09.txt

modmerge dp2_ts.cxb merge_list_fps_09.txt dp2_ts_merged.cxb

cpxext_cat dp2_ts.cxb | head -n6

cpxext_cat dp2_ts_merged.cxb | head -n6

 12

Appendix: VirtualBox image for running the ModuLand programs

Setting up VirtualBox and the ModuLand Image

VirtualBox is a free virtualization technology for running a virtual computer inside your real
computer. First, please download and install the latest VirtualBox (version 3.1.2 as of writing
this guide) from http://www.virtualbox.org/wiki/Downloads. Please also see if your computer
meets the requirements for running VirtualBox (a recent computer should have no problems
coping with this task).

After downloading and installing the VirtualBox program as shown above, at the registration
for the ModuLand program package HERE, you will receive a confirmation email also
containing a link to the zip-compressed ModuLand VirtualBox image which makes the
interface between the VirtualBox program and the ModuLand programs. The zip file contains
a ModuLand.ovf1 and a vmdk file. Extract these files to a suitable location.

Start the VirtualBox program (which has been previously downloaded from
http://www.virtualbox.org/wiki/Downloads), and choose Import Appliance option from the
File menu as shown below.

Choose the extracted ovf file and follow the process of importing, accepting the default
values. Importing may take some minutes to finish. After the import process is done, the

1ovf stands for Open Virtualization Format. If you are already familiar with a virtualization software capable of
using ovf images (such as VMWare), you may also use that software for importing and running the image.
However, here we restrict ourselves to only give instructions for the free VirtualBox software. Please note that
the ovf image provided here has certain convenience features (via the VirtualBox Guest Additions) installed
which are only available when using VirtualBox.

 13

http://www.virtualbox.org/wiki/Downloads
http://www.linkgroup.hu/modules.php#programs
http://www.virtualbox.org/wiki/Downloads

“ModuLand Image” is listed under your images, and you can start the virtual machine, as
shown below.

Getting started with the ModuLand Image

After the Virtual Machine has booted, a small browser window will open with usage
instructions. Important elements of the user interface are shown in the picture below.

 14

Sharing a folder between your computer and the virtual computer

You can share a folder of your computer with the virtual computer (either with just reading or
with read and write support) for easing the transfer of your data from and to the virtual
computer. The process is shown in the picture below. Please also read the instructions
presented in the virtual computer after startup.

Stopping the Virtual Computer

After you have finished you work, please shut down the virtual computer using the Menu >
Shutdown > Power-off computer option as shown in the screen below.

 15

	User Guide
	to the ModuLand program package
	
	(Version 1.2; June 2010)
	(An algorithm package for the determination of a hierarchical community structure of networks with adjustable overlaps)
	
	 Brief overview of the method family
	 Network data
	Networks provided in the program package
	Converting Pajek net network data to the cxg format with pajek_conv
	
	Converting network data in edgelist format to cxg format

	 Influence function calculation and community landscape construction methods
	
	The NodeLand and LinkLand methods
	
	The PerturLand method
	
	The EdgeWeight method

	Module identification and module membership assignment methods
	
	The ProportionalHill and TotalHill methods
	Ordered version of the ProportionalHill and TotalHill methods
	Extracting module membership data

	Merging strongly correlated modules
	Determining the module-module correlation matrix
	Creating a list of module groups to be merged
	Merging the correlated groups of modules

	Higher level networks
	Creating a higher level network
	Projecting module assignment of higher levels to the original network
	
	Extracting projection data

	
	 Examples
	A complete example
	 An example for merging strongly correlated groups of modules

	 Appendix: VirtualBox image for running the ModuLand programs
	Setting up VirtualBox and the ModuLand Image
	
	Getting started with the ModuLand Image
	 Sharing a folder between your computer and the virtual computer
	
	Stopping the Virtual Computer

