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Background: Network communities help the functional organization and evolution of 
complex networks. However, the development of a method, which is both fast and 
accurate, provides modular overlaps and partitions of a heterogeneous network, was 
rather difficult.  
Methodology/Principal Findings: Here we introduce the novel concept of community 
landscapes and ModuLand, an integrative framework determining overlapping network 
modules as hills of the community landscape and including several widely used 
modularization methods as special cases. As various adaptations of the concept, we 
developed several algorithms, which provide an efficient analysis of weighted and 
directed networks, and (1) determine overlapping modules with a high resolution; (2) 
uncover a hierarchical network structure in previously unprecedented details allowing an 
efficient, zoom-in analysis of large networks; (3) allow the determination of key network 
elements and (4) help to predict network dynamics.  
Conclusions/Significance: The concept opens a wide range of possibilities to develop 
new approaches and applications including network routing, classification, comparison 
and prediction.  

Introduction 

Hundreds of module determination methods are based on roughly the same intuitive 
picture identifying the network communities as the dense groups of the network, in which 
the network elements have a much stronger influence on each other than the rest of the 
network. The development of a method which translates this intuitive definition of 
modules into practically applicable, fast and accurate, widely usable algorithm turned out 
to be a very challenging problem. So far a wide variety of great ideas and powerful 
approaches based on very different physical or algorithmic grounds were applied in order 
to solve this problem. At the moment there is no ‘best method’ available to find network 
modules, and even the widely used algorithms may suffer from serious problems (ESM1 
Figure S1.1, ESM1 Tables S1.1 and S1.2) [1-7], although they usually provide useful and 
clear dissections of the networks.  

Results 
 
Description of the ModuLand method family 

Keeping in mind the emerging needs for an integrative approach we have developed the 
ModuLand framework (Figure 1 and ESM1 Figure S1.2). Considering a real network as 
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an interacting system, the quantitative simulation of the influence (or indirect impact) of a 
given node on the rest of the network is an interesting problem in itself. The first step of 
the ModuLand framework builds up these influence functions (we call them as 
‘community heaps’ from now on, see Glossary) for each and every network element. A 
community heap can be extended over the whole network, which would produce 
accurate, but slow results, so practically it is beneficial to stop the influence simulation at 
a given threshold. As basic examples of this technique, we developed the NodeLand, 
LinkLand and PerturLand community heap construction methods, which we describe in 
detail in the Supporting Information (ESM1). In the applications shown we mostly use 
the LinkLand method as a simple and convenient representative of the huge family of the 
possible, ModuLand framework simulation techniques. As an example, Figure 1A shows 
three community heaps defined over the links of the ‘network science’ co-authorship 
network [8]. All the three starting links highlighted by the arrows belong to widely 
collaborating, key players of the field, resulting large community heaps. 

As the second step of the ModuLand framework, the ‘community landscape’ is generated 
by summing up all the community heap values of a given link of the network (that is, the 
values of the influence functions of all other links of the network on the given link), and 
consequently performing this summation for each link. In order to give a visual 
representation, the resulting centrality-type values are plotted vertically over a 2D 
representation of the network resulting in a 3D visual image of the community landscape 
heights as shown on Figure 1B and ESM1 Figure S1.3. Now we can see ‘hills and 
mountains’ of the community landscape consisting of those elements, which influence 
each other stronger than the rest of the network. This is exactly the intuitive definition of 
modules given in the first sentence of this paper.  

The third and last step of the ModuLand framework identifies the modules of the network 
by finding the ‘hills and mountains’ of the community landscape. This is seemingly easy 
(we can ‘see’ them on Figure 1B), but we should not forget that the position of links in 
their 2D network representation of Figure 1 already reflects the information on the 
density and strength of their interactions. There are many different ways to construct an 
algorithm for identifying the hills of the community landscape, each such algorithm 
suitable for a range of applications, but not necessary adequate for all (Section V. and 
Figures S1.4 and S1.5 of ESM1). One of the most straightforward choices is the 
ThresholdHill method, which identifies the connected components of the community 
landscape above a given threshold as hills. This approach results in distinct network 
modules (having no overlaps) like in case of the widely used Girvan and Newman 
method [2]. Generally it is a rather difficult problem to choose the most appropriate value 
for the threshold. If we raise the detection limit too high, we will find only the largest 
communities, and on the other hand, if we set the detection limit too low in order to be 
able to see the smaller modules, than most of the large communities would merge 
together. This is the manifestation of the well known ‘giant-component’ problem [6,9-
11]. With an other hill definiton approach (like our PeakHill methods) we can overcome 
this hard problem, but we may encounter some new difficulties at noisy community 
landscapes as we describe later.  
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In the case of PeakHill methods we start the identification of the modules by finding the 
module centers, i.e. the links (or plateaus of links), which have a local maximum height 
on the community landscape. We worked out two implementations of the PeakHill 
methods in detail, the TotalHill and ProportionalHill methods (Figure 1C and ESM1 
Figure S1.2). In these methods the hills (thus the module membership values of the links) 
are generally overlapping in a continuous way. By finding local maxima, PeakHill 
methods automatically yield the number of modules, and find the small and large 
modules simultaneously in strong contrast with the previously described ThresholdHill 
approach, where one often needs special criteria to determine the threshold value (see 
ESM1 Figure S1.4 and Table S1.2). Although for practical purposes we suggest the use 
the ProportionalHill method as a representative example of the PeakHill approach, the 
most detailed module overlap information is achievable with the computationally more 
expensive TotalHill method. Therefore we show results of applying the TotalHill method 
on Figure 1C and Figure 2, where large segments of the network belong to at least two 
modules.  

We note that although the PeakHill approaches we described in this paper (including the 
ProportionalHill method suggested above) outperform the traditional ThresholdHill 
approach in terms of overcoming the giant-component problem and producing 
overlapping modules, nevertheless, they also have their own drawbacks. When applying 
the PeakHill approaches on a ‘noisy’ community landscape, each local maximum will 
result a new separate (and possibly highly overlapping) module. Therefore we routinely 
applied a simple, yet effective post-processing step for merging the groups of extremely 
overlapping modules (having a correlation higher than 90%) (see Section VI. of ESM1).  

As a final step of our module membership assignment methods the module membership 
values of the links in the network are determined. Based on this result the module 
membership values of the nodes are simply calculated as the sum of the membership 
values of their links. 

General characterization of the ModuLand method 

After introducing the structure of the ModuLand framework in this Section we will 
characterize the approach. In principle both the calculation of the community heaps and 
the determination of the community landscape hills are demanding problems, requiring 
specific solutions depending on the precise nature of the analyzed network. However, by 
constructing the community landscape, the small details of the community heaps get 
averaged out, therefore in practical cases fast and approximate solutions of the mentioned 
problems are sufficient. This is the reason why rather simple community heap 
construction methods (like the NodeLand method) perform well on various kinds of real-
world networks. On the other hand, the module membership value of any given node is 
obtained as the sum of the module membership value of the links of the given node, thus 
the small details of the hill determination step get also averaged out. The summation of 
the link module membership values provides an overlapping modularization of the nodes 
even in the absence of an overlapping modularization of the links themselves. (A similar 
situation is described in ref. [12].) To summarize, we divided the very challenging 
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problem of module determination into two likewise hard subproblems, but fortunately in 
most cases a relatively fast, approximate treatment of these subproblems provide 
sufficiently fine modularizations in the end. However, depending on the precise nature of 
the application, it is possible, or even advised to devise a more elaborate treatment of the 
subproblems of community heap and community landscape hill determinations.  

Several widely used, efficient network modularization methods [2,7] can be interpreted 
as parts of the ModuLand framework either by identifying the underlying community 
heap construction method or by identifying the community landscape directly (Section 
IV.4. of ESM1). New modularization methods can easily be generated by taking an 
existing ModuLand modularization protocol, and changing any of its community heap 
construction, landscape generation, or hill determination methods. Additionally, former 
methods yielding non-overlapping modules (which can be interpreted as the application 
of the ThresholdHill method over an appropriate landscape) can be upgraded to 
overlapping modularization methods using the PeakHill module determination approach 
(Section IV.4. of ESM1).  

Optionally, a higher level hierarchical representation of the network can also be created, 
where the nodes of the higher level correspond to the modules of the original network, 
and the links of the higher level correspond to the overlaps between the respective 
modules (Figure 1D, ESM1 Figure S1.2 and S1.6). This hierarchical representation can 
be used recursively in several steps until the whole original network is represented by 
noninteracting elements, allowing a fast, zoom-in type analysis of large networks 
(Section VII. of ESM1). 

Enriching the binary, yes/no module membership assignment of many previous methods, 
the ModuLand method-family gives a continuous scale for the association of each link 
and element to all modules (ESM1 Figure S1.7). To define the number of modules of a 
link or element the ‘effective number’ of modules was introduced (see Section V.6.b. of 
ESM1), which is a threshold-less, continuous measure based on the effective size of 
support of a probability distribution [13]. Additionally, the ModuLand method allowed 
the definition of a large set of novel, topological measures characterizing e.g. the 
centrality and bridgeness of network elements and links (Sections IV. and V.6. of ESM1). 

Characterization of the overlapping modules identified by the ModuLand method-
family 

The ModuLand method family, even with the simplistic NodeLand community heap 
construction method correctly identified the observed split of the gold-standard Zachary 
karate club network [14] while uncovering a third, previously identified module and 
several club-members in modular overlaps (ESM1 Figure S1.7).  

Application of the LinkLand community heap construction method to the University of 
South Florida word association network [15] resulted in a set of modules having a highly 
heterogeneous degree, module size and module overlap distribution (ESM1 Figure S1.8), 
which is in agreement with earlier data (see ESM1) [3,7].  
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The application of the ModuLand method on the benchmark graphs of Lancichinetti et al. 
[16] generated over a range of parameter settings showed (Figure S1.13. and Section 
VI.2. of ESM1) that the identified ModuLand modules corresponded consistently to the 
original modules, while modules can be defined in the strong sense (where ‘strong sense’ 
means, at least the half of the neighboring nodes are assigned to the same module as the 
given node, see ref. [16]).  

Variable overlaps of modules surrounding heteronym and antagonym words in a 
word association network 

Extending the analysis of the gold-standard Zachary karate club network, we examined 
the much larger University of South Florida word association network having 10,617 
elements and 63,788 links [15], which was a target of a successful modularization study 
yielding overlapping modules [7]. This detailed analysis took 10 minutes on a computer 
with a 3 GHz Intel CPU. Figure 2 shows the modular environment of the antagonym 
word, “terrific” and that of the heteronym, “content”. The mingling colors indicate a high 
overlap between the modules. Importantly, the overlap of the modules with alternative 
meanings of the two words is much greater in the case of “terrific” than in case of 
“content”, which is a reasonable consequence of the fact that variations of antagonistic 
meanings (“terrific”) are often amongst our associations, while associations between 
differently pronounced meanings (“content”) are much more seldom. Overlap between 
the multiple meanings of the words “bright” and “focus” (ESM1 Figure S1.9) is closer to 
that of “terrific” than that of “content”. However, in case of these latter, multiple meaning 
words the similarly pronounced meanings are not divided into two major sections as in 
case of the antagonyms or heteronyms, which is again in agreement with our common 
knowledge. 

Modular hierarchy of a social network 

The modular hierarchy of the high school friendship Community-44 of the Add-Health 
dataset [17] was uncovered using several community heap construction methods all 
revealing four well-distinguishable main modules with a large amount of further sub-
modules (Figure 3A and ESM1 Figures S1.10-S1.12). Girls were less likely to form 
multiracial friendship communities (chi-square p < 0.05; Figure 3B), and boys were in 
the overlap of significantly more friendship communities than girls (chi-square 
p < 0.0001; Figure 3C). These differences are in agreement with the sociological 
observations indicating a larger cohesiveness of friendship circles of girls than that of 
boys [18,19]. 

Efficient determination of central, key elements of power-grid network 

To test whether the ModuLand framework can identify key network elements, we 
calculated the change of network integrity [20] during the disintegration of the USA 
Western Power Grid network [21]. Elements were removed in the decreasing order of 
their degree, betweenness centrality and ModuLand bridgeness (measuring the bridge-
like role of the elements between the modules as defined in Section V.6.d. of ESM1). 
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Figure 4 shows that the impact of bridgeness-based element removal on network integrity 
was larger than that of the degree-based attacks and was well comparable to, or better 
than the result of betweenness centrality-based element removal. The equal-to-better 
performance of bridgeness-based disintegration compared to that using betweenness 
centrality is surprising all the more, since the global network integrity measure 
corresponds extremely well to the global betweenness centrality measure [20]. 

Discrimination between date- and party-hubs 

Discrimination of date- and party-hubs of protein interaction networks, i.e. proteins 
sequentially or simultaneously interacting with a large number of neighbors, is a rather 
difficult task [22-27]. We hypothesized, that among date-hubs and party-hubs of similar 
centrality, date-hubs may have a higher bridgeness (i.e. they are more overlapping 
between modules of the network). This assumption was substantiated by the inter-
modular position of date-hubs [24,26] and by the similarly high efficiency of bridgeness-
based and date-hub-based network disintegration (cf. Figure 4 with Figure 2 of [24] and 
[27]). The identification of the overlapping modules of a high-confidence yeast protein-
protein interaction network [28] resulted in a number of modules with well-known 
functions (Figure 5A and ESM1 Figure S1.14). We calculated the bridgeness and 
centrality measures of the individual proteins, and plotted these values on Figure 5B. The 
separation of date- and party-hubs represented by the line of Figure 5B classified 84 
party-hubs correctly of the total of 201, and 307 date-hubs of the total of 318. This result 
becomes even more convincing, if we consider that 10 out of 11 incorrectly identified 
date-hubs (91%) and 89 out of 117 incorrectly identified party-hubs (76%) have been 
potentially misclassified, if comparing them to the consensus of classifications [22-26]. 
In conclusion, by the help of the novel measures of the ModuLand-based analysis, we 
were able to discriminate between date- and party-hubs, thus predicting the dynamic 
behavior of network elements using only the topological information of their network. 

Discussion 
 
The ModuLand method-family we introduced in this paper and in part in an earlier patent 
application [29] is a novel, fast and robust approach, which can be tailored for the special 
needs of the experimenter as well as for the conditions of the network studied. The 
method gives a comprehensible, hierarchical representation of large, real-world networks. 
Several key steps and especially their combination in the ModuLand method-family are 
novel, since (a) such a large variety of community heap-determination methods have not 
been integrated in any modularization methods; (b) community landscapes and their hills 
have never been used to determine network modules. Previous methods using local 
community detection or yielding overlapping modules (ESM1 Table S1.2) [4,7] used 
only one or another of the approaches presented here, and did not combine any of them to 
community landscapes. Hinneburg and Keim [30] used the density function landscape to 
determine non-overlapping clusters, but did not calculate the overlaps based on the hill 
detection defined in ModuLand method family. Previous network landscape methods 
utilized local elements of topology [23,31], while the ModuLand method assesses a wide 
range of structural information. Moreover, none of the previous authors used their 
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landscapes for module determination. The recent work of Roswall and Bergstrom [5] 
published during the course of the current study [29] used the probability flow of random 
walks to construct a map of scientific communication. This method is similar to our 
PerturLand community heap construction method, but its application in [5] yields non-
overlapping modules. The idea of determining node modules based on the link modules 
was also used by recent published methods, such as Ahn et al. [12]. 

The extensive and rich overlaps, network hierarchy, as well as the novel centrality and 
bridgeness measures uncovered by the ModuLand method can be used for the 
identification of long-range, stabilizing weak links, for the determination of the recently 
described creative, trend-setting elements governing network development and evolution 
[32], for prediction of missing links or elements, for network classification and for the 
design of efficient information transfer to name only a few of the many possibilities. 
Module overlaps might play a key role in the disconnection and synchronization of 
modules of complex systems, and their re-assembly during and after crisis, respectively. 
We invite our colleagues to design novel versions of the framework we gave, and to 
explore the above and other examples. 

Materials and Methods 

Networks 

Network science co-authorship network. The giant component of the undirected, un-
weighted network science co-authorship network contained 379 elements and 914 links 
[8]. Karate club social network. The weighted and undirected social network of a karate 
club has been reported by W. Zachary [14] containing 34 elements and 78 links. As the 
members of the karate club have split into two factions later, the network became a gold-
standard of module determination methods [1-5,7]. Word association network. The giant 
component of Appendix A of the University of South Florida word association network 
(http://www.usf.edu/FreeAssociation/) [15] with removed link directions contained 
10,167 elements and 63,788 weighted links, where weight refers to the association 
strength (see Section I.3. of ESM1). School friendship network. The giant component of 
the high school friendship Community-44 of the Add-Health database 
(http://www.cpc.unc.edu/projects/addhealth) [17] with removed link directions contained 
1,127 elements and 5,096 weighted links, where weights represent the strengths of 
friendships (see Section I.4. of ESM1). Power-grid network. The un-weighted and 
undirected network of the USA Western Power Grid [21] contained 4,941 elements and 
6,594 links. Yeast protein-protein interaction network. The giant component of the un-
weighted and undirected yeast protein-protein interaction network [28] contained 2,444 
elements and 6,271 links, covering approximately half of the yeast genome and the most 
reliable (‘strongest’) ~3% of the expected number of total links. 
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Brief description of the representative LinkLand community heap construction 
method  

We give a detailed description of the different community heap construction methods in 
the Supporting Information (Section IV of ESM1). Here we introduce the major steps of 
the representative LinkLand community heap construction method utilized in each of the 
modularization examples shown in this paper. 

The LinkLand method is a fast, but approximating method for the determination of the 
community heaps in weighted, undirected networks. Here the community heap belonging 
to the starting element or link is determined by a network walk. The starting link (and 
later its growing community heap) is extended by those neighboring elements and their 
links linking them to the existing community heap and also to each other, which will at 
least not decrease the ‘community heap-threshold’ of the existing community heap; the 
community heap is ready once such extension is no longer possible. The community 
heap-threshold of the LinkLand method is defined as the summarized weight of the links 
in the community heap divided by the number of nodes in the heap. 

The following pseudo code shows how the LinkLand community heap construction 
method selects the members of the community heap in case of a given starting link of the 
network. The definition of the important variables used in the algorithm: 

• startLink: the starting link of the actual community heap. 
• heapNodeList: elements of the community heap (initially empty). 
• heapLinkList: links of the community heap (initially empty). 
• tempList: elements to be added to the community heap in the next round 
• actualHeapThreshold: sum of the weight of all links in heapLinkList divided by the 

number of elements in heapNodeList. 

clear tempList 
add the two end-elements of startLink to tempList while tempList is not empty { 
 add all elements of tempList to heapNodeList. 
 for each link e connected to any elements of tempList { 
  if endpoints of e are already in heapNodeList { add e to heapLinkList } 
 } 
 clear tempList 
 recalculate actualHeapThreshold 
 maxNewHeapThreshold := actualHeapThreshold 
 
 for each element n not in heapNodeList but having non-zero links lks with an endpoint in 
 heapNodeList { 
  newHeapThreshold := sum of the weight of all links in heapLinkList + sum weight of link in lks 
  newHeapThreshold := newHeapThreshold / (number of elements in heapNodeList + 1) 
  if newHeapThreshold > maxNewHeapThreshold { 
   clear tempList 
   maxNewHeapThreshold := newHeapThreshold 
  } 
  if newHeapThreshold = maxNewHeapThreshold { add n to tempList } 
 } 
} 
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In the end of the LinkLand algorithm we find the links and elements of the community 
heap in the heapLinkList and heapNodeList, respectively. Identifying the community 
heap of one link in the LinkLand algorithm is structurally similar to a breadth-first 
search, therefore the runtime complexity of the algorithm is O(e(n+e)), where n is the 
number of nodes and e is the number of links in the network. However in practice the 
algorithm is very fast as a community heap of any given link rarely covers the whole 
network.  

For downloading the ModuLand program package including the LinkLand community 
heap construction method see our homepage: http://www.linkgroup.hu/modules.php 

Brief description of the ProportionalHill module determination method 

We give a detailed description of the different methods determining modules based on 
the community landscape in the Supporting Information (Section V of ESM1). Here we 
show the major steps of the representative ProportionalHill module membership 
assignment method utilized in many modularization examples shown in this paper. 

In the ProportionalHill module membership assignment method links of the network are 
assigned to modules of their non-lower neighboring links in the proportion of the 
absolute community landscape height of the respective neighboring links. The links 
having no higher neighboring link are assigned with full height to the respective modules 
defined by themselves. 

At the start of the ProportionalHill module membership assignment method all links are 
marked as unassigned. After this, multiple rounds of link-assignments are performed: in 
each round, links are assigned to modules based on the assignment of previously assigned 
links. In each round, we descend to next slice of links, starting from the top community 
landscape slice, where a community landscape slice is formed by all links having the 
same community landscape height. 

Here we describe the steps of a single round of the ProportionalHill module membership 
assignment method: 

• The first step: each of the hill-tops/highlands of the community landscape 
(connected components of the actual community landscape slice without higher 
neighboring links) becomes a new module-core. Each link of all these connected 
components are assigned to their respective new modules with an assignment-
strength of their full community landscape height. 

• In consecutive steps, unassigned links of the community landscape slice having at 
least one neighboring link already assigned to the growing modules, are assigned 
to modules proportional to the assignment-strength of their neighbors already 
assigned to existing modules. In such a step, links assigned in the current step are 
not considered as ‘assigned neighbors’ during the respective step. The step 
described here is repeated until there are any unassigned links remaining in the 
actual community landscape slice. Once all links of the actual community 
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landscape slice have already been assigned to modules, the round is over and the 
next round begins, unless there are no more (lower) community landscape slices 
left, in which case the whole assignment procedure ends. 

As an outcome of the ProportionalHill module membership assignment process, for each 
link the sum of the assignment-strength values of the given link to the different modules 
is equal to the community landscape height of that link. 

The Linux-based computer programs of ModuLand-related methods (including the 
ProportionalHill method) and a Windows-based virtual Linux environment including 
ModuLand-related programs can be downloaded from here: 
www.linkgroup.hu/modules.php. 

Brief description of the TotalHill module determination method 

Here we give a brief description of the TotalHill module membership assignment method 
utilized in some modularization examples shown in this paper. In the TotalHill module 
membership assignment method the assignment of module-cores is performed as 
described previously for the ProportionalHill module membership assignment method, 
but when assigning a non-core link to modules of the neighboring links in proportion of 
the community landscape height of the neighboring links, the neighboring links of both 
non-lower and lower community landscape height are considered. This module 
membership assignment method is especially important, since it yields the most detailed 
information of the network module structure. More details and the exact algorithm can be 
found in the Supporting Information (Section V.2.c of ESM1). 

Glossary 

Community heap: Based on the direct interactions in the network we calculate the 
effective, indirect impact of the starting element to the rest of the network. In our work 
we represent this new indirect interaction as a property of the original links of the 
network, so we calculate a new weight, the so-called community heap value for every 
link from a given starting element. The community heap is a connected subgraph, 
surrounding the starting element in which the community heap values are all larger than 
zero.  

Community landscape: Integrating all community heap values, which were assigned to a 
given link, we get a centrality-type value called as the community landscape height of 
that link. The community landscape height shows that how much the given link is 
affected by the integrated indirect impact of all the starting elements of the network. The 
community landscape is defined as the sum of the community heap values. We usually 
represent the community landscape as a 3 dimensional image of the original network, 
where the horizontal plane is a 2 dimensional, ‘usual’ representation of the network, 
while on the vertical axis the community landscape values of network links are plotted. 
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Supporting information 

Electronic Supplementary Material S1 (ESM1): This supporting information contains a 
detailed description of the ModuLand method including the pseudo-codes of all 
algorithms used, 14 Supplementary Figures, 3 Supplementary Tables (with 18 module 
definitions, 129 different modularization methods, 13 module comparison methods), a 
Supplementary Discussion and 370 references. 
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Figure 1. Description of the ModuLand method-family. For this illustrative example we used 
the network science co-authorship network [8] without link weights using the LinkLand 
community heap determination method with the TotalHill module membership assignment 
method. The network was laid out using the Kamada-Kawai algorithm and visualized with a 
custom Blender script. On the vertical axes community heap values (panel A), or community 
landscape values (panels B, C and D) of the links are shown. Community heaps of panels A1 or 
A2 belong to the Barabási—Vicsek or Girvan—Newman author-pairs, respectively. Panel A3 
shows the merged community heap of the Arenas—Pastor-Satorras and Guimera—Amaral co-
authorship links. Links and nodes of panels C and D are colored in proportion of the colors of the 
modules they belong. Panel A: community heap detection. First, the community heap of each 
link (or element) of the network are identified. If a link is in the ‘middle’ of a module, it will be a 
part of many community heaps (all the three widely collaborating author-pairs, whose community 
heap is shown by the arrows are from this category). On the contrary, links at module ‘edges’ will 
belong to few community heaps only. Panel B: community landscape construction. Next, the 
community landscape is constructed by summing up the community heap values. The hills of the 
community landscape correspond to the modules of the network. Panel C: determination of 
overlapping modules. Last, modular centers are identified as the links at the local maxima of the 
community landscapes, and memberships of links in all network modules are determined. Panel 
D: determination of network hierarchy. Optionally, a higher level hierarchical representation of 
the network can be created, where elements of the higher level correspond to modules of the 
original network, and links of the higher level correspond to overlaps between the respective 
modules. Sizes of higher level elements correspond to the log size of the respective lower level 
modules, where the module size is the sum of the membership assignment strengths of all 
elements to that module. 
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Figure 2. Overlapping modules of a word-association network. Modules of the University of 
South Florida word association network [15] were determined using the LinkLand community 
heap construction method and the TotalHill module membership assignment method. During the 
post-processing of the module assignment, we merged the modules with ProportionalHill module 
membership assignment-based correlation higher than 0.9 (see Section VI. of ESM1). The 
network was laid out using the Kamada-Kawai algorithm of Graphviz [33] and visualized using a 
custom program written in Python language using OpenGL graphics. Links were colored in 
proportion to the colors of the modules they belong. Panel A, Modules around the antagonym 
word, “terrific”. Panel B, Modules around the heteronym word, “content”. In addition to the 
selected words “terrific” and “content” similar words above a similarity threshold of 10% are also 
shown with a contrast corresponding to their degree of similarity. The extent of similarity 
between two words was calculated as the sum of the two pair-wise minima of their unity-
normalized module membership vector giving the membership assignment strength of the given 
word to all modules of the network (for more details see Section V.6.e. of ESM1). 
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Figure 3. Overlapping modules of a school-friendship network. We have determined the 
modular structure of Community-44 of the Add Health survey [17] using the LinkLand 
community heap determination method together with the ProportionalHill module membership 
assignment method. During the post-processing of the module assignment, we merged the 
modules with ProportionalHill module membership assignment-based correlation higher than 0.9 
(see Section VI. of ESM1). Panel A, Modules of Community-44. The school friendship network 
was laid out using the Kamada-Kawai algorithm. Elements represent the individual students, and 
were colored according to the color of the friendship module they assigned the most. We show 
the modular structure of the first hierarchical level having 18 modules. The inset of Panel A 
shows color-codes of the modules with an area proportional to the size of the respective module. 
Panel B, The number of network modules in case of boys (blue, solid bars) and girls (red-black 
hatched bars) with mixed racial contents at the lowest hierarchical level (level 0). The extent of 
mixed racial content was monitored using the ‘effective number of races’ (Section V.6.b. of 
ESM1) with a bin-size of 0.5. Panel C, The number of boys (blue, solid bars) and girls (red-black 
hatched bars) having different overlaps in friendship circles as determined in the first hierarchical 
level with a bin-size of 1. Overlap was measured as the ‘effective number’ (Section V.6.b. of 
ESM1) of modules of the given student. 
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Figure 4. Determination of key elements of the USA Western Power Grid network. The 
figure shows the decreasing integrity of the USA Western Power Grid network [21] as a function 
of the number of elements removed. Elements were removed in the order of their decreasing 
degree (black alternating dashes and dots) betweenness centrality [2] (red dashed lines) or 
‘bridgeness’ (solid blue lines), where ‘bridgeness’ measures the overlap of the given element 
between different modules as described in detail in Section V.6.d. of ESM1. Network integrity 
has been calculated after Latora and Marchiori [20]. Bridgeness was calculated from the modular 
structure of the lowest hierarchical level as determined by the LinkLand community heap 
construction method and the TotalHill module membership assignment method. During the post-
processing of the module assignment, we merged the modules with ProportionalHill module 
membership assignment-based correlation higher than 0.9 (see Section VI. of ESM1). On the 
vertical axis of the insets the betweenness centrality (left, color-coded from red to yellow) and 
bridgeness (right, color-coded from blue to green) of the elements of the USA Western Power 
Grid network are shown. Networks on the insets were laid out using the Kamada-Kawai 
algorithm and visualized with a custom Blender script. 
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Figure 5. Prediction of the dynamical behavior of network elements: segregation of date- 
and party-hubs based on their modular overlaps. Overlapping modules of the yeast protein-
protein interaction network of Ekman et al. [28] were identified using the LinkLand community 
heap determination method with the TotalHill module membership assignment method using the 
modular structure of the lowest level of hierarchy. During the post-processing of the module 
assignment, we merged the modules with ProportionalHill module membership assignment-based 
correlation higher than 0.9 (see Section VI. of ESM1).  Panel A, 3D view of the yeast protein-
protein interaction network. The underlying 2D network layout was set by the Kamada-Kawai 
algorithm. The vertical positions reflect the community landscape values of the elements on a 
linear scale. Elements were colored as the module of their maximum membership. Panel B, 
Centrality and bridgeness of yeast date- and party-hubs. Hubs having more than 8 neighbors and 
non-hubs with less neighbors were positioned on the scattergram according to their ModuLand 
centrality (x-axis, the height of the community landscape) and ModuLand bridgeness (y-axis) as 
defined in Section V.6.d. of ESM1. Date- and party-hubs are marked with red circles and blue 
triangles, respectively, while non-hub proteins are represented by gray crosses. The inset shows a 
double logarithmic plot of hubs with large centrality. 


