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This chapter will describe network-based adaptive mechanisms, which mobilize the 
'creativity' of cancer cells to survive and expand in an unpredictable environment. First, the 
dominance-shift from 'business-as-usual' processes driven by the core of cellular networks to 
changes in the network periphery leading to 'creative' shortcuts between distant network 
regions and answering novel challenges (1,2) will be described. This forms a general 
adaptation/learning mechanism and characterizes the initial stages of cancer development (2). 
Such adaptive changes may change the topology of cellular networks from a rigid to a plastic 
state. Rigid networks have a dense core, disjunct modules, hierarchy, small network entropy 
and sink-dominance leading to a few attractors. Plastic networks have a fuzzy core, 
overlapping modules, less hierarchy/more loops, large network entropy and source-dominance 
leading to many attractors. Alternating changes of network plasticity and rigidity help to 
encode novel information to the network structure remodeling the network core and 
developing novel system attractors (2,3). Cancer stem cells are characterized with 
exceptionally large evolvability involving rapid alternations in their plasticity and rigidity (4). 
Plastic and rigid networks (characterizing early- and late-stage tumors) require conceptually 
different drug design strategies. Plastic networks (which dissipate stimuli very well) should 
only be attacked by a "central hit" targeting their hubs, bridges and bottlenecks, since if they 
are attacked at their network periphery, the effect of the drug will never reach the center of the 
network due their efficient dissipation. On the contrary, rigid networks (which transmit 
stimuli without a large dissipation) may be 'over-excited' by "central hit" attacks, leading to 
side-effects. Rigid networks require the "network influence drug design strategy" targeting the 
neighbors of their hubs and central nodes (5-8). "Network influence targeting" of neighbors of 
key network nodes increases the precision of intervention targeting only certain functions of 
the key, neighboring network node. The chapter will conclude with the outline of network 
dynamics-based, personalized multitarget drug design strategies as a promising perspective of 
future therapies. 
 
Definition of cellular networks. In this chapter I will describe the adaptation mechanisms of 
‘cellular networks’. Primarily, the term ‘cellular networks’ contains many types of networks 
inside a cell, such as protein-protein interaction networks (interactomes), signaling networks, 
gene transcription networks and metabolic networks. Recently, additional types of intra-
cellular networks have also been outlined, such as cytoskeletal networks, cellular organelle 
networks and chromatin networks. However, currently we do not have enough information on 
most of these latter networks to get them included to a detailed analysis of network adaptation 
processes of cancer cells (5,9-11). Importantly, a rapidly emerging area of network science is 
the assessment of inter-cellular networks, which gives insight to the interactions of 
heterogeneous cancer cell types in the tumor, stromal cells and immune cells (12-14). The 
analysis of these networks has not resulted yet enough information to get them included to the 
current review, but their adaptation processes give an exceptionally interesting area of future 
studies. 
 
The core-periphery learning mechanism and it role in cancer development 
 
Three discoveries gave important insight to the mechanism of complex systems' adaptation.  
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A. )Network core and periphery. Starting with the work of Steve Borgatti and Martin Everett 
in 1999 (15) a number of studies showed that most networks can be dissected to a core and a 
periphery. The network core refers to a central and densely connected set of a few network 
nodes, where connection density is often increased further by large edge weights. In contrast, 
the network periphery consists of nodes that are non-central, sparsely connected, and attach 
preferentially to the core (16). Importantly, some networks (where the modular structure is 
well-developed, and the network modules have a relatively small overlap) possess multiple 
cores, which correspond to the cores of their modules. Module cores can be defined by several 
algorithms (17,18). Nodes of network core are (evolutionarily) conserved and shielded from 
the environment of the network by the periphery (16). Peripheral nodes are often sources of 
innovation, since they have a large degree of freedom (which is described in social networks 
as a lack of social pressure; 16).  
 
B.) Attractors of complex systems are deepened by learning. In 1969, Stuart Kauffman 
described that random genetic control networks develop a surprisingly small number of 
attractors (19). Later studies of William Little, Gordon Shaw and John Hopfield showed that 
attractors are deepened during the learning process (20-22). 
 
C.) Attractors of complex systems are encoded by core nodes of their network 
representation. Recent studies of Reka Albert, Bernold Fiedler, Atsushi Mochizuki and their 
co-workers showed that attractors are encoded by overlapping node subsets of the strongly 
connected network component, which is the core of directed, bow-tie networks (23-26). 
 
The core-periphery learning theory. From the above three key observations and from several 
other studies described in Ref. 2 the following core-periphery learning theory was conceived 
(Figure 1). In most cases the stimulus is affecting peripheral nodes, since they are much more 
numerous than core nodes, and core nodes are often shielded by peripheral nodes from the 
network environment. The stimulus propagates from the periphery to the core in a fast 
process, since peripheral nodes are preferentially connected to core nodes. Once the stimulus 
reached one node within network core it becomes shared by the whole core of the network in 
a fast process, since core nodes are densely connected, and their connecting edges have a 
large weight (see the solid lines of Figure 1). 
 
After these starting steps one of the following three scenarios may happen (2).  
 
Scenario 1. Activation of a previously encoded attractor. If the incoming stimulus had been 
experienced by the complex system several times before, a set of core nodes have already 
formed a sub-group of the core which is even more densely interconnected than the rest of the 
core. This sub-group of nodes drives the complex system to an attractor giving an adequate 
response to the formerly experienced stimulus. If now the same stimulus is repeated again, it 
is channeled to this sub-group of core nodes, which drive the system to the very same attractor 
(Figure 1A). This mechanism results in a fast, reliable and robust response of the whole 
complex system (2).  
 
Scenario 2. Initial development of a new attractor. If the stimulus is a consequence of a novel, 
unexpected situation (Figure 1B) it may be incompatible with any of the existing attractors 
encoded by the current core of the complex network. As a consequence, this novel stimulus 
may provoke conflicting core responses inducing the complex system to fluctuate between its 
original attractors. This prolongs the time when the stimulus has not been dissipated by the 
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system yet. During this extended time, the stimulus may have the chance to propagate back to 
the weakly connected peripheral nodes of the network, which form the majority of nodes in 
most networks, and which are not connected to each other, therefore can only be accessed via 
the core. This process stabilizes the system. and may modify the position, size, saddles or 
depth of the complex system's attractor basins. The emergent periphery-response is usually 
slow. This is partly because the re-organization of the periphery is requiring a large number of 
rather slow, mostly stochastic steps (2). A key example of such a 'learning step' of a complex 
system is the case of a 'creative node' (1), which has a dynamic position in the network (often 
acting as a 'date hub'; 17,27), and makes a shortcut between previously distant network 
regions allowing an entirely novel combination of the information encoded in these network 
segments previously (1). In addition, the emerging system response is slow because stimulus-
driven periphery reorganization must often be attempted hundreds (if not thousands) of times 
before finding a new, adequate response (2).  
 

 
 
Figure 1. Description of the core-periphery learning mechanism of complex systems. The 
stimulus is rapidly channeled to the rigid core of the network (red nodes) as a result of the central 
position of the core (2). It becomes 'instantly' shared by core nodes due to their dense connections 
having large edge weights (solid lines). Panel A: Scenario 1. The stimulus (yellow arrow) is compatible 
with a previously set attractor of the complex system. This attractor is encoded by a subset of the core 
nodes (horizontal red double arrows) and provokes a fast, matching response (solid line yellow double 
arrows), which dissipates the signal in a rapid process. Panel B: Scenario 2. The stimulus is 
incompatible with previously set attractors of core-nodes (red) provoking a fluctuation between attractors 
(red double arrows). Consequently, the stimulus has enough time to spread back to the network 
periphery (green nodes), where it induces a slow, system-level, integrative response (dashed line yellow 
double arrows). Here, a collective decision of the entire network emerges in a selection process of 
many, mostly stochastic steps (1). Panel C: Scenario 3. Repeated stimuli reconfigure the core (red 
nodes) encoding a new system attractor (solid line yellow double arrows). Reproduced with permission 
from Ref. (2). 
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Scenario 3. Stabilization and encoding of the new attractor. In case the novel stimulus is 
repeated (many times), the peripheral network nodes, which were involved in "Scenario 2", 
may gradually reconfigure the network core adding nodes to it, or exchanging its nodes 
(Figure 1C). This process encodes the newly acquired response as a novel attractor of the 
system. Core-reconfiguration may weaken or erase some of the earlier system attractors and 
thus may also serve as a ‘forgetting’ mechanism (2). 
 
The core-periphery learning mechanism characterizes a wide range of complex systems. 
The core-periphery learning theory, described above characterizes the adaptation of a wide 
range of complex systems from protein structures to social networks (2). In case of proteins 
the rigid core is often surrounded by intrinsically disordered protein segments, which may 
become at least partially ordered during signaling processes forming a 'conformational 
memory' which helps a learning process at the molecular level (2,28). Individual cells may 
'learn' by the modification of signaling pathway dynamics (29), and – most importantly – by 
developing epigenetic, chromatin memory (30). Metabolic networks possess a reaction core 
containing all essential biochemical processes and have a large, adaptive periphery, which is 
switched on and off by transcriptional and regulatory processes driven by the flow of nutrients 
and emerging needs of the cell or its environment (31). In the last few years a large number of 
publications showed the validity of the core-periphery learning theory in neuronal and social 
networks. In social groups 'peripheral' individuals A.) are not belonging to the social 'elite'; 
B.) are free of social pressure; C.) do not have the intrinsic need of maintaining the 'status-
quo'; D.) and thus may often become innovators. The collective action of peripheral 
individuals is often called as the "wisdom of crowds" (2). 
 
Validity of the core-periphery learning theory in cancer: initial observations and an area of 
further studies. There are only a few sporadic examples yet, showing the possibility that the 
core-periphery learning theory may also drive the development of cancer. Determinant nodes 
of the attractors of the epithelial-mesenchymal transition reside in the strongly connected 
component of the dynamic signaling network describing this process (32). Expression pattern 
of the strongly connected component of miRNA-induced inter-genetic networks had an 
efficient prognostic potential for breast and colorectal cancer patients (33). A recent study 
highlighted the importance of the first and second neighbors of cancer-related proteins in 
cancer development and potential therapeutic approaches (8). It will be a task of further 
studies to prove or refute, whether peripheral nodes of protein-protein interaction, signaling or 
metabolic networks play a distinctive role in the development of novel responses of cancer 
cells. 
 
Alternating plasticity and rigidity as a hallmark of developing cancer cells 
 
Complex systems often reside in one of two major configurations: plastic or rigid. Plasticity 
and rigidity may be defined as a functional term of the complex system and as a structural 
term of the network description of the complex system. Functional and structural plasticity 
and rigidity are (obviously) not describing the same phenomenon but they largely correlate in 
their occurrence (3,34). 
 
Differences of functionally rigid and plastic complex systems. Functionally rigid systems 
have only a very few attractors, typically only one, having a very rough attractor landscape. 
(A rigid object, like a needle is not able to change its state, unless it breaks, where this non-
continuous, non-differentiable transition forms an entirely different system.) On the contrary, 
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a functionally plastic system has a large number of attractors often associated with a smooth 
attractor landscape. (A plastic object, like a paper-clip may adopt a large number of 
configurations, without an abrupt change.) Consequently, rigid systems have a very poor 
adaptation (learning) potential, but they have an extremely good 'memory' performing their 
dedicated task(s) with high precision and efficiency. On the contrary, plastic systems have an 
extremely good adaptation (learning) potential, but have a very poor 'memory', so they can 
perform specific tasks with only a low precision and efficiency (3,34). 
 
Differences of plastic and rigid networks. Structurally plastic networks often have an 
extended, fuzzy core, where the network core can not be easily demarcated and often contains 
most of the network nodes (instead of only a few). Plastic networks have fuzzy modules 
having a large overlap. Usually plastic networks display a low hierarchy, have more loops 
and, if they are directed, they are source-dominated. On the contrary, structurally rigid 
networks have a small, dense core and disjoint, tightly organized, dense modules. Rigid 
networks are characterized by a strong hierarchy and, if they are directed, by sink-dominance 
(Figure 2; 3,34,35). In summary, plastic networks are periphery dominated, while rigid 
networks are core-dominated. This is in a good agreement with the findings that network 
attractors are encoded by core-nodes (23-26), since the small, and well-organized core of rigid 
networks encodes only a few attractors, where these attractors can be reached with a high 
probability and provide an optimized, highly efficient response. On the contrary, plastic 
networks have a large number of poorly defined attractors, which are encoded by a large 
number of poorly discriminated core nodes. 

 
Figure 2. Properties of plastic and rigid networks. Network structure may adopt structurally plastic 
and rigid (3,34) network configurations. Plastic networks often have an extended, fuzzy core, where the 
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network core can not be easily discriminated and the core often contains most of the network nodes 
(instead of only a few). In addition, plastic networks have fuzzy modules having a large overlap. Usually 
plastic networks display a low hierarchy, have more loops and, if they are directed, they are source-
dominated (35). On the contrary, rigid networks have a small, dense core and disjoint, tightly organized, 
dense modules. Rigid networks are characterized by a strong hierarchy and, if they are directed, by 
sink-dominance (35). In summary, plastic networks are periphery dominated, while rigid networks are 
core-dominated. Plastic network configurations can be induced and maintained by 'soft spots', i.e. nodes 
which have a high dynamics and multiple, weak connections such as creative nodes (1) exemplified by 
molecular chaperones, prions or prion-like, Q/N-rich proteins (1,28). On the contrary, rigid network 
configurations can be induced and maintained by 'rigidity seeds', i.e. nodes which increase the size of 
densely connected network clusters, e.g. by completing a larger complete subgraph (clique) in the 
network or by joining two densely connected network regions. 
 
The mismatched stimulus, described in "Scenario 2" before, may ‘melt’ part of the network 
core by decreasing the core edge weights. Note that this will also decrease the core rigidity, 
which leads to the destabilization of the original attractors and an increase of learning 
potential to develop new attractors. Plastic network configurations can be induced and 
maintained by 'soft spots', i.e. nodes which have a high dynamics and multiple, weak 
connections (Figure 2). Note that these 'soft spots' are the same as the 'creative nodes' (1) 
mentioned in "Scenario 2" above, which have a dynamic position in the network and make a 
shortcut between previously distant network regions allowing an entirely novel combination 
of the information encoded in these network segments previously (1). 
 
If the mismatched stimulus is repeated, as described in "Scenario 3" before, it may encode a 
novel set of constraints to the network structure establishing a new segment of the network 
core. This core-extension makes the network more rigid again (3,34). These rigid network 
configurations can be induced and maintained by 'rigidity seeds', i.e. nodes which increase the 
size of densely connected network clusters, e.g. by completing a larger complete subgraph 
(clique) in the network or by joining two densely connected network regions (Figure 2). 
 
Alternating changes of plasticity and rigidity form a general adaptation mechanism. 
Plastic-rigid transitions characterize a large number of complex systems from protein 
structures to social networks. As an example of the protein-level changes, molecular 
chaperones have an ATP hydrolysis-driven 'chaperone-cycle', where they help the refolding of 
misfolded proteins by the physical extension of misfolded proteins which is followed by their 
release from the chaperone-cage. In their extended form, misfolded proteins become rigid, 
while after release they are plastic again. If the misfolded protein folds to its native 
conformation, it becomes more rigid, since it is stabilized in one conformation (attractor) 
instead of the competing many conformations (attractors) of the misfolded, at least partially 
disordered state. Such chaperone-driven extension-release (rigidity-plasticity) cycles follow 
each other until the misfolded protein is refolded again or becomes discarded by proteasomal 
degradation (3). 
 
Cell differentiation proceeds via an initial 'disorganization' of the gene expression networks of 
the progenitor cells. This can be measured by the size of the largest cluster as compared to 
that of the complete gene expression network. The initial 'disorganization' is followed by the 
development of the much more organized gene expression network of the differentiated cell. 
In agreement with a transient increase of system plasticity during the cell differentiation 
process, the heterogeneity of the cell population becomes much larger after the start of the 
differentiation process than that of the progenitor cells. As the differentiation proceeds, the 
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heterogeneity of the cell population markedly decreases, usually much below to that observed 
with the progenitor cells (36). 
 
There are several other studies showing that plasticity-rigidity changes of neuronal networks 
can be observed during a large number of learning processes, such as bird song-learning or 
infant speech-learning. Human creativity consists of alternating "blind variation" and 
"selective retention" processes corresponding to more plastic and rigid neuronal states, 
respectively. Plasticity-rigidity cycles also characterize organizational learning processes (3). 
 
Plasticity-rigidity changes in cancer development. The development of cancer is 
characterized by an increase in the network entropy of cellular networks (37-40) by an 
increased level of stochastic processes (noise; 41), by an increased amount of loops (42) and 
by increased phenotypic plasticity (4,6,43). All these changes contribute to the increase of 
cellular heterogeneity of cancer cells in a developing tumor (Figure 3; 44-54). Higher degree-
entropy of signaling networks was found to correlate with lower survival of prostate cancer 
patients (39). A detailed investigation of normalized local and inter-modular signaling 
network entropies revealed increased entropies in adenoma when compared to that of healthy 
colon epithelial cells. Importantly, colon carcinoma cells showed decreased entropies when 
compared to that of adenoma cells (40). Similar changes were observed by the transiently 
larger entropy of early stage B cell lymphoma and hepatocellular carcinoma development 
(45,46), as well as by the more plastic proliferative phenotype than that of the remodeling 
phenotype in gene expression signature analysis of various cancer types (47). This shows a 
remarkably similar pattern of changes in system disorder than that observed during cell 
differentiation (36). Cells, which start from their healthy attractors, reach a specially 
developed set of attractors, called "cancer attractors" (48-51) during cancer development. The 
change of the attractor landscape from the starting, relatively 'rough' surface, which defines 
the healthy attractor(s) well, through a much 'smoother' attractor landscape, where novel 
attractors arise and/or may become accessible, to the final stage of advanced tumors, where a 
well-developed and relatively stable (set of) cancer attractors becomes occupied and 
stabilized, corresponds very well to the observed increase and then decrease (40) of signaling 
network entropy.  
 
Cancer stem-like cells display especially large evolvability of plasticity/rigidity changes. 
Cancer stem cells (i.e. cells within a tumor that possess the capacity of self-renew and to 
repeatedly re-build the heterogeneous lineages of cancer cells that comprise a tumor in a new 
environment) may possess both plastic and rigid network structures and cellular phenotypes. 
The plastic phenotype is rapidly proliferating and characterized by symmetric cell division. 
The rigid phenotype is characterized by not so frequent, asymmetric cell divisions and by 
increased invasiveness. A highly increased ability of plasticity modulation (which results in 
an increased level of evolvability) may prove to be a major discriminatory hallmark of cancer 
stem cells. In cancer development cancer stem cells are repeatedly selected for high 
evolvability, and became “adapted to adapt”. Importantly, this increased plasticity modulation 
ability may be a key reason why anti-cancer therapies often induce cancer stem cells instead 
of killing or transforming them (4,6,55-57). 
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Figure 3. Conceptual summary: Development of cancer as an adaptation process of increasing 
and decreasing plasticity defining different drug targeting strategies. The figure summarizes 
literature data (6, 37-51) showing that cancer progresses by an initial increase of system plasticity 
followed by a late-stage decrease of plasticity. The more plastic to more rigid transition of network 
structure during cancer development requires a rather different drug targeting strategy in early and late 
tumors. While at the early phase of cancer development "central hits" (5) of "1" hubs, "2" inter-modular 
bridges, or "3" bottlenecks may be a winning strategy, at later stages of carcinogenesis the more 
indirect means of "network influence strategy" (5), such as "4" multi-target (52), "5" edgetic (53) or "6" 
allo-network drugs (54) should be used. Very unfortunately, most anti-cancer drug tests use cancer cell 
lines which have more plastic networks resembling to those of the "early stage tumor like" cells, while 
most patients are diagnosed having late stage tumors with rigid cellular networks. Importantly, the 
heterogeneous cell populations of tumors (44) may harbor early- and late-stage cells at the same time. 
Moreover, cancer stem cells may have the ability to change their plasticity from that of early- to late-
stage tumor cells and vice versa (4). Therefore, multi-target, combinatorial or sequential therapies using 
both central hit- and network influence-type drugs may provide a promising therapeutic modality. 
Reproduced with permission from Ref. (6). 
 
Drug design strategy differences against early late stage tumors 
 
Plastic and rigid networks require completely different drug targeting strategies. Plastic 
networks have a rich, and rather undifferentiated contact structure, which is able to dissipate 
'unexpected' external stimuli rather well. Note that drug treatment can be perceived here as an 
'unexpected' intervention towards which the cancer cell has not developed an adequate 
response yet. Targeting non-central nodes in the a periphery-dominant plastic networks would 
result in a fast dissipation of the intervention. Thus plastic networks require a "central-hit", 
which targets their central nodes, such as hubs, inter-modular bridges or bottlenecks (see 
numbers "1" through "3" of Figure 3, respectively). Rapidly dividing bacteria are typical 
examples of more plastic cellular networks. Not surprisingly many antibiotics (with the 
notable exception of "choke point drugs", which target enzymes producing a key molecule for 
bacterial survival) target central nodes of bacterial networks (5). Rapidly proliferating cells of 
early stage cancers, as well as the rapidly proliferating, symmetrically dividing phenotype of 
cancer stem cells have plastic networks, since the continuous changes of rapid cell division 
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can be more adequately served by a contact-rich, non-centralized network structure. Thus, 
"central-hit" type drugs may be more efficient against plastic phenotypes of cancer cells, such 
as that of early stage tumors. In agreement with the "central-hit" strategy, targets of anticancer 
drugs are often hubs (58). Moreover, inter-modular interactome hubs were found to associate 
with oncogenesis better than intra-modular hubs (59). 
 
Rigid networks have a well-differentiated, centralized, hierarchical, modular structure, which 
is specialized to perform certain functions very efficiently. Rigid structures do not dissipate 
unexpected, random signals very well, since they have been optimized to the rapid and 
efficient dissipation of only certain, previously experienced signals. As a consequence, rigid 
structures transmit signals rather well. This may make "central-hits" an 'overshoot', where not 
only the required action but also side effects may develop. Cells forming a stable cooperating 
community, such as cells of a tissue have most of the time rigid networks. This makes the 
network influence strategy a key strategy in most diseases, such as e.g. diabetes or 
neurodegenerative diseases (5). Late stage tumors have often "highly experienced cells", 
which have already been organized as a part of a community either in the original tumor or in 
metastases. The 'overshoot' of "central-hit" targeting in case of cancer cells having rigid 
networks may result in the secretion of several molecules helping the resistance of 
neighboring cells, or necrosis instead of apoptosis inducing various survival programs in their 
neighboring cells. Thus instead of 'central-hits' the more indirect means of the "network 
influence strategy" (5) should be used when targeting the rigid networks of late stage tumors. 
The "network influence strategy" may target (first or second) neighbors of key network nodes 
(8). Such a targeting method has been called as "allo-network drugs" (54; number "6" of 
Figure 3). This may allow the excitation of only a subset of the signaling pathways related to 
the central network node, which gives a much larger specificity to the intervention. (Such 
fine-tuning is close-to-impossible in extremely plastic networks, where the rich contact 
structure channels the intervention to any direction, thus the 'fine-tuned' intervention becomes 
soon dissipated.) "Network-influence targeting" may also be reached by multi-target or 
combination therapies, which may use suboptimal doses and may reach their goal by 
superimposing two (or more) actions at specific nodes of the network in a specific way 
mobilizing again only a subset of the signaling pathways related to that particular node (52; 
number "4" of Figure 3). Both neighbor-targeting and combination targeting may actually 
behave as "edgetic drugs" (53; number "5" of Figure 3), which are targeting not an entire 
node, but only one of its interactions, i.e. an edge of the signaling network. Edgetic targeting 
was used in case of the super-hub mTOR (60) or inhibiting the p53/MDM2 connection by 
nutlins (61). Neighbors of cancer-related proteins were found as wide-spread targets of drugs 
used in diseases mostly other than cancer, and were suggested as targets of potential re-
purposing efforts (8). Several initial network-based identification of potential combination 
therapies have been published (5, 62-64). 
 
Most anti cancer drug tests are performed on cancer cell lines, which are rapidly proliferating 
cells having a plastic network and from this point of view resemble to the cells of early stage 
tumors. Very unfortunately, most patients are diagnosed with rather late stage tumors having 
more rigid cellular networks. Importantly, the heterogeneous cell populations of tumors (44) 
may harbor cells having both plastic and rigid networks at the same time. Moreover, as 
described in the previous section, cancer stem cells have the ability to change their networks 
from a plastic to a rigid stage and vice versa (4,6,55-57). Cancer stem cells follow Nietzsche’s 
proverbial saying “what does not kill me makes me stronger”. Thus, conventional anti-cancer 
therapies may actually provoke cancer stem cell development (56,65-68). In such scenarios 
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multi-target, combinatorial or sequential therapies using both "central hit"- and "network 
influence-type drugs" may provide a promising therapeutic modality. 
 
As an important closing remark, the above suggestions have been formulated as a 
consequence of a large number of individual experimental studies listed in references 1 
through 6. However, their applicability in anti-cancer therapies proper has only rather limited 
direct evidence. It will be an exciting task of future studies to show what are the applicability 
and limits of the above considerations in cancer pharmacology. 
 
Conclusions and perspectives: towards a personalized drug design 
 
This chapter listed two key network-based adaptation mechanisms. Both of these mechanisms 
modulate the evolvability of cancer cells to help their survival in an unpredictable 
environment. The first network-based adaptation mechanism was the "core-periphery learning 
theory" (2). Here responses to previously experienced stimuli are encoded by node-sets in the 
core of the network, while peripheral nodes are needed to 'invent' novel responses to 
unexpected environmental changes. Peripheral nodes are expected to play a major role in 
early stages of cancer development. Late stage tumor cells may have already encoded several 
successful survival mechanisms to the core of their networks. The second network-based 
adaptation mechanism was the alteration of plastic and rigid network states (3). Alternating 
changes of network plasticity and rigidity help to encode novel information to the network 
structure remodeling the network core and developing novel system attractors. Cancer stem 
cells utilize this mechanism to develop an exceptionally large evolvability (4,6).  
 
Importantly, plastic and rigid networks (mainly characterizing early- and late-stage tumors; 
4,6) require conceptually different drug design strategies. Plastic networks require "central 
hits" targeting their hubs, bridges and bottlenecks. On the contrary, rigid networks require the 
"network influence drug design strategy" targeting the neighbors or edges of their hubs and 
central nodes (5-8). 
 
Though the above suggestions have been formulated as a consequence of a large number of 
individual experimental studies listed in references 1 through 6, they require further 
experimental studies to establish their precise limits. A few of these important future research 
areas: 
1. Further studies are needed to characterize the core-periphery mechanisms and plastic/rigid 

alterations of progressing cancer cell and cancer stem cell networks. 
2. Systematic studies are needed to show differences in efficient targeting of various network 

positions in early- and late-stage tumors. 
3. More system-wide studies are needed to clarify network targeting consequences of multi-

target, combinatorial or sequential therapies. 
4. All the above areas require extension to inter-cellular network interactions, where only a 

few studies have been performed yet (as a few examples, see references 69-75). 
5. Both intra- and intercellular networks may be 'personalized' meaning the inclusion of the 

functional (e.g. signaling) consequences of the mutation profile of the given tumor and 
modification of network nodes and edges according to the transcriptome and proteome of 
the given tumor. Importantly, due to the heterogeneity of tumors, and due to the 
complexity of chromatin-modifications this task may be much more complex than initially 
thought. 

6. Last, but not least, most of the above considerations (at least implicitly) involved 
structural changes of cellular networks and have not detailed the dynamic analysis of 
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cellular networks determining, predicting and modifying the changes in their attractor 
structure. There are several important studies (such as those listed in references 42,68,76-
83), which established the novel area of 'cancer attractor re-design', which develops multi-
target drugs and drug combinations, which A.) do not allow the dominance of 
proliferation, invasiveness, etc. attractors of cancer cells; B.) act as "differentiation 
therapies" (48,81) guiding cancer cells back to their healthy attractors and C.) may lock 
cancer stem cells in their plastic or rigid phenotype. 

 
The author is very much hoping that a paradigm-change is about to emerge in anti-cancer-
therapies, where the primary target will be cancer-cell "re-education" and guidance instead of 
their mass-murder, and this will be performed using the emerging knowledge on network 
adaptation mechanisms. 
 
Acknowledgments 
The author acknowledges the contribution of current and former LINK-Group 
(http://linkgroup.hu) members for the conceptualization of the ideas presented. The author is a 
founder and advisor of the Turbine startup (http://turbine.ai) applying the attractor structure of 
personalized signaling networks to predict optimal intervention points of anti-cancer 
combination therapies. Work in the author's laboratory is supported by the Hungarian 
National Research Development and Innovation Office (OTKA K115378) and by the Higher 
Education Institutional Excellence Program of the Ministry of Human Capacities in Hungary, 
within the framework of molecular biology thematic programs of the Semmelweis University 
(Budapest, Hungary). 
 
References 
 
1. Peter Csermely, "Creative elements: network-based predictions of active centres in 

proteins, cellular and social networks," Trends Biochemical Sciences 33, (2017): 569-576. 
2. Peter Csermely, "The wisdom of networks: A general adaptation and learning mechanism 

of complex systems. The network core triggers fast responses to known stimuli; 
innovations require the slow network periphery and are encoded by core-remodeling," 
Bioessays 40, (2018): 201700150. 

3. Peter Csermely, "Plasticity-rigidity cycles: A general adaptation mechanism," (2015): 
http://arxiv.org/abs/1511.01239 

4. Peter Csermely, János Hódsági, Tamás Korcsmáros, Dezső Módos, Áron Ricardo Perez-
Lopez, Kristóf Szalay, Dávid V. Veres, Katalin Lenti, Lin-Yun Wu, Xiang-Sun Zhang, 
"Cancer stem cells display extremely large evolvability: alternating plastic and rigid 
networks as a potential mechanism. Network models, novel therapeutic target strategies 
and the contributions of hypoxia, inflammation and cellular senescence," Seminars in 
Cancer Biology 30, (2015): 42-51. 

5. Peter Csermely, Tamás Korcsmáros, Huba J. M. Kiss, Gábor London, Ruth Nussinov, 
"Structure and dynamics of biological networks: a novel paradigm of drug discovery. A 
comprehensive review," Pharmacology and Therapeutics 138, (2013): 333-408. 

6. Dávid M. Gyurkó, Dániel V. Veres, Dezső Módos, Katalin Lenti, Tamás Korcsmáros, 
Peter Csermely, "Adaptation and learning of molecular networks as a description of 
cancer development at the systems-level: potential use in anti-cancer therapies," Seminars 
in Cancer Biology 23, (2013): 262-269. 

7. Áron Ricardo Perez-Lopez, Kristóf Z. Szalay, Dénes Türei, Dezső Módos, Katalin Lenti, 
Tamás Korcsmáros, Peter Csermely , "Targets of drugs are generally, and targets of drugs 



 12 

having side effects are specifically good spreaders of human interactome perturbations," 
Scientific Reports 5, (2015): 10182. 

8. Dezső Módos, Krishna C. Bulusu, Dávid Fazekas, János Kubisch, Johanne Brooks, István 
Marczell, Péter M. Szabó, Tibor Vellai, Péter Csermely, Katalin Lenti, Andreas Bender, 
Tamás Korcsmáros, "Neighbours of cancer-related proteins have key influence on 
pathogenesis and could increase the drug target space for anticancer therapies," NPJ 
Systems Biology and Applications 3, (2017): 2. 

9. Kivilcim Ozturk, Michelle Dow, Daniel E. Carlin, Rafael Bejar, Hannah Carter, "The 
emerging potential for network analysis to inform precision cancer medicine," Journal of 
Molecular Biology 430, (2018): 2875-2899. 

10. Paramasivan Poornima, Jothi Dinesh Kumar, Qiaoli Zhao, Martina Blunder, Thomas 
Efferth, "Network pharmacology of cancer: From understanding of complex interactomes 
to the design of multi-target specific therapeutics from nature," Pharmacological 
Research 111, (2016): 290-302. 

11. Yoo-Ah Kim, Dong-Yeon Cho, Teresa M. Przytycka, "Understanding genotype-
phenotype effects in cancer via network approaches," PLoS Computational Biology 12, 
(2016): e1004747. 

12. James S. Hale, Meizhang Li, Justin D. Lathia, "The malignant social network: cell-cell 
adhesion and communication in cancer stem cells," Cell Adhesion and Migration 6, 
(2012): 346-355. 

13. Yu Wu, Lana X. Garmire, Rong Fan, "Inter-cellular signaling network reveals a 
mechanistic transition in tumor microenvironment," Integrative Biology (Cambridge) 4, 
(2012): 1478-1486. 

14. Joseph X. Zhou, Roberto Taramelli, Edoardo Pedrini, Theo Knijnenburg, Sui Huang, 
"Extracting intercellular signaling network of cancer tissues using ligand-receptor 
expression patterns from whole-tumor and single-cell transcriptomes," Scientific Reports 
18, (2017): 8815. 

15. Steve P. Borgatti, Martin G. Everett, "Models of core/periphery structures," Social 
Networks 21, (1999): 375-395. 

16. Peter Csermely, András London, Ling-Yun Wu, Brian Uzzi, "Structure and dynamics of 
core-periphery networks," Journal of Complex Networks 1, (2013): 93-123. 

17. István A. Kovács, Robin Palotai, Máté S. Szalay, Peter Csermely, "Community 
landscapes: an integrative approach to determine overlapping network module hierarchy, 
identify key nodes and predict network dynamics," PLoS One 5, (2010): e12528. 

18. Máté Szalay-Bekő, Robin Palotai, Balázs Szappanos, István A. Kovács, Balázs Papp, 
Peter Csermely, "ModuLand plug-in for Cytoscape: determination of hierarchical layers 
of overlapping network modules and community centrality," Bioinformatics 28, (2012): 
2202-2204. 

19. Stuart Kauffman, "Homeostasis and differentiation in random genetic control networks," 
Nature 224, (1969): 177-178. 

20. William A. Little, "The existence of persistent states in the brain," Mathematical 
Biosciences 19, (1974): 101-120. 

21. William A. Little, Gordon L. Shaw, "Analytic study of the memory storage capacity of a 
neural network," Mathematical Biosciences 39, (1978): 281-290. 

22. John J. Hopfield, "Neural networks and physical systems with emergent collective 
computational abilities," Proceedings of the National Academy of Sciences of the USA 79, 
(1982): 2554-2558. 

23. Bernold Fiedler, Atsushi Mochizuki, Gen Kurosawa, Daisuke Saito, "Dynamics and 
control at feedback vertex sets. I: Informative and determining nodes in regulatory 
networks," Journal of Dynamics and Differential Equations 25, (2013): 563–604. 



 13 

24. Atsushi Mochizuki, Bernold Fiedler, Gen Kurosawa, Daisuke Saito, "Dynamics and 
control at feedback vertex sets. II: A faithful monitor to determine the diversity of 
molecular activities in regulatory networks," Journal of Theoretical Biology 335, (2013): 
130-146. 

25. Assieh Saadatpour, Reka Albert, Timothy C. Reluga, "A reduction method for Boolean 
network models proven to conserve attractors," SIAM Journal on Applied Dynamical 
Systems 12, (2013): 1997-2011. 

26. Jorge G. Zañudo, Reka Albert, "Cell fate reprogramming by control of intracellular 
network dynamics," PLoS Computational Biology 11, (2015): e1004193. 

27. Jing-Dong J. Han, Nicolas Bertin, Tong Hao, Debra S. Goldberg, Gabriel F. Berriz, Lan 
V. Zhang, Denis Dupuy, Albertha J. M. Walhout, Michael E. Cusick, Frederick P. Roth, 
Marc Vidal, "Evidence for dynamically organized modularity in the yeast protein-protein 
interaction network," Nature 430, (2004): 88-93. 

28. Peter Tompa, "The principle of conformational signaling," Chemical Society Reviews 45, 
(2016): 4252-4284. 

29. Tanmay Mitra, Shakti N. Menon, Sitabhra Sinha, "Emergent memory in cell signaling: 
Persistent adaptive dynamics in cascades can arise from the diversity of relaxation time-
scales," (2018): https://arxiv.org/abs/1801.04057 

30. Augustina D'Urso, Jason H. Brickner, "Mechanisms of epigenetic memory," Trends in 
Genetics 30, (2014): 230-236. 

31. Eivind Almaas, Zoltan N. Oltvai, Albert Lászlo Barabási, "The activity reaction core and 
plasticity of metabolic networks," PLoS Computational Biology 1, (2005): e68. 

32. Steven Nathaniel Steinway, Jorge G.T. Zañudo, Wei Ding, Carl Bart Rountree, David J. 
Feith, Thomas P. Loughran Jr., Reka Albert, "Network modeling of TGFβ signaling in 
hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint sonic 
hedgehog and Wnt pathway activation," Cancer Research 74, (2014): 5963-5977. 

33. Vladimir V. Galatenko, Alexey V. Galatenko, Timur R. Samatov, Andrey A. 
Turchinovich, Maxim Y. Shkurnikov, Julia A. Makarova, Alexander G. Tonevitsky, 
"Comprehensive network of miRNA-induced intergenic interactions and a biological role 
of its core in cancer," Scientific Reports 8, (2018): 2418. 

34. Merse E. Gáspár, Peter Csermely, "Rigidity and flexibility of biological networks," 
Briefings in Functional Genomics 11, (2012): 443-456. 

35. Justin Ruths, Derek Ruths, "Control profiles of complex networks," Science 343, 2014): 
1373-1376. 

36. Indika Rajapakse, Mark Groudine, Mehran Mesbahi, "Dynamics and control of state-
dependent networks for probing genomic organization," Proceedings of the National 
Academy of Sciences of the USA 108, (2011): 17257-17262. 

37. Andrew E Teschendorff, Simone Severini, "Increased entropy of signal transduction in the 
cancer metastasis phenotype," BMC Systems Biology 4, (2010): 104. 

38. James West, Ginestra Bianconi, Simone Severini, Andrew E. Teschendorff, "Differential 
network entropy reveals cancer system hallmarks," Scientific Reports 2, (2012): 802. 

39. Dylan Breitkreutz, Lynn Hlatky, Edward Rietman, Jack A. Tuszynski, "Molecular 
signaling network complexity is correlated with cancer patient survivability," Proceedings 
of the National Academy of Sciences of the USA 109, (2012): 9209-9212. 

40. János Hódsági, "Network entropy as a measure of plasticity in cancer," MSc Thesis, UCL 
London (2013). 

41. Elisabet Pujadas, Andrew P. Feinberg, "Regulated noise in the epigenetic landscape of 
development and disease," Cell 148, (2012): 1123-1131. 



 14 

42. Luca Albergante, J. Julian Blow, Timothy J. Newman, "Buffered Qualitative Stability 
explains the robustness and evolvability of transcriptional networks," eLife 3, (2014): 
e02863. 

43. Dongya Jia, Mohit Kumar Jolly, Prakash Kulkarni, Herbert Levine, "Phenotypic plasticity 
and cell fate decisions in cancer: Insights from dynamical systems theory," Cancers 
(Basel) 9: (2017): E70. 

44. Andriy Marusyk, Vanessa Almendro, Kornelia Polyak, "Intra-tumour heterogeneity: a 
looking glass for cancer?" Nature Reviews of Cancer 12, (2012): 323-334. 

45. Luonan Chen, Rui Liu, Zhi-Ping Liu, Meiyi Li, Kazuyuki Aihara, "Detecting early-
warning signals for sudden deterioration of complex diseases by dynamical network 
biomarkers," Scientific Reports 2, (2012): 342. 

46. Rui Liu, Meiyi Li, Zhi-Ping Liu, Jiarui Wu, Luonan Chen, Kazuyuki Aihara, "Identifying 
critical transitions and their leading biomolecular networks in complex diseases," 
Scientific Reports 2, (2012): 813. 

47. Elke K. Markert, Arnold J. Levine, Alexei Vazquez, "Proliferation and tissue remodeling 
in cancer: the hallmarks revisited," Cell Death and Disease 3, (2012): e397. 

48. Stuart Kaufman, "Differentiation of malignant to benign cells," Journal of Theoretical 
Biology 31, (1971): 429-451. 

49. Sui Huang, Ingemar Ernberg, Stuart Kauffman, "Cancer attractors: a systems view of 
tumors from a gene network dynamics and developmental perspective," Seminars in Cell 
and Developmental Biology 20, (2009): 869-876. 

50. Sui Huang, "Tumor progression: chance and necessity in Darwinian and Lamarckian 
somatic (mutationless) evolution," Progress in Biophysics and Molecular Biology 110, 
(2012): 69-86. 

51. Wei-Yi Cheng, Tai-Hsien Ou Yang, Dimitris Anastassiou, "Biomolecular events in cancer 
revealed by attractor metagenes," PLoS Computational Biology 9, (2013): e1002920. 

52. Peter Csermely, Vilmos Ágoston, Sándor Pongor, "The efficiency of multi-target drugs: 
the network approach might help drug design," Trends in Pharmacological Sciences 16, 
(2005): 178-182. 

53. Quan Zhong, Nicolas Simonis, Qian-Ru Li, Benoit Charloteaux, Fabien Heuze, Niels 
Klitgord, Stanley Tam, Haiyuan Yu, Kavitha Venkatesan, Danny Mou, Venus 
Swearingen, Muhammed A. Yildirim, Han Yan, Amélie Dricot, David Szeto, Chenwei 
Lin, Tong Hao, Changyu Fan, Stuart Milstein, Denis Dupuy, Robert Brasseur, David E. 
Hill, Michael E. Cusick, Marc Vidal, "Edgetic perturbation models of human inherited 
disorders," Molecular Systems Biology 5, (2009): 321. 

54. Ruth Nussinov, Chung-Jung Tsai, Peter Csermely, "Allo-network drugs: harnessing 
allostery in cellular networks," Trends in Pharmacological Sciences 32, (2011): 686-693. 

55. Wanyin Chen, Jihu Dong, Jacques Haiech, Marie-Claude Kilhoffer, Maria Zeniou, 
"Cancer stem cell quiescence and plasticity as major challenges in cancer therapy," Stem 
Cells International 2016, (2016): 1740936. 

56. Mary R. Doherty, Jacob M. Smigiel, Damian J. Junk, Mark W. Jackson, "Cancer stem cell 
plasticity drives therapeutic resistance," Cancers (Basel) 8, (2016): 8. 

57. Marina Carla Cabrera, Robert E. Hollingsworth, Elaine M. Hurt, "Cancer stem cell 
plasticity and tumor hierarchy.," World Journal of Stem Cells 7, (2015): 27-36. 

58. Takeshi Hase, Hiroshi Tanaka, Yasuhiro Suzuki, So Nakagawa, Hiroaki Kitano, 
"Structure of protein interaction networks and their implications on drug design," PLoS 
Computational Biology 5, (2009): e1000550. 

59. Ian W. Taylor, Rune Linding, David Warde-Farley, Yongmei Liu, Catia Pesquita, Daniel 
Faria, Shelley Bull, Tony Pawson, Quaid Morris, Jeffrey L Wrana, "Dynamic modularity 



 15 

in protein interaction networks predicts breast cancer outcome," Nature Biotechnology 27, 
(2009:) 199–204. 

60. Heinz Ruffner, Andreas Bauer, Tewis Bouwmeester, "Human protein-protein interaction 
networks and the value for drug discovery," Drug Discovery Today, 12, (2007): 709–716. 

61. Lyubomir T. Vassilev, Binh T. Vu, Bradford Graves, Daisy Carvajal, Frank Podlaski, 
Zoran Filipovic, Norman Kong, Ursula Kammlott, Christine Lukacs, Christian Klein, 
Nader Fotouhi, Emily A. Liu, "In vivo activation of the p53 pathway by small-molecule 
antagonists of MDM2," Science 303, (2004): 844–848 

62. Madhukar S. Dasika, Anthony Burgard, Costas D. Maranas, "A computational framework 
for the topological analysis and targeted disruption of signal transduction networks," 
Biophysical Journal 91, (2006): 382–398. 

63. Alexei Vazquez, "Optimal drug combinations and minimal hitting sets," BMC Systems 
Biology 3, (2009): 81. 

64. Hee Sook Lee, Taejeong Bae, Ji-Hyun Lee, Dae Gyu Kim, Young Sun Oh, Yeongjun 
Jang, Ji-Tea Kim, Jong-Jun Lee, Alessio Innocenti, Claudiu T Supuran, Luonan Chen, 
Kyoohyoung Rho, Sunghoon Kim, "Rational drug repositioning guided by an integrated 
pharmacological network of protein, disease and drug," BMC Systems Biology 6, (2012): 
80. 

65. Sui Huang, Stuart Kauffman, "How to escape the cancer attractor: rationale and 
limitations of multi-target drugs," Seminars in Cancer Biology 23, (2013): 270–278. 

66. Sui Huang, "Genetic and non-genetic instability in tumor progression: link between the 
fitness landscape and the epigenetic landscape of cancer cells," Cancer Metastasis 
Reviews 32, (2013): 423–448. 

67. Corbin E. Meacham, Sean J. Morrison, "Tumour heterogeneity and cancer cell plasticity," 
Nature 501, (2013): 328–337. 

68. Angela Oliveira Pisco, Amy Brock, Joseph Zhou, Andreas Moor, Mitra Mojtahedi, Dean 
Jackson, Sui Huang, "Non-Darwinian dynamics in therapy-induced cancer drug 
resistance," Nature Communications 4, (2013): 2467. 

69. Romano Demicheli, Dinah Faith T. Quiton, Marco Fornili, William J. M. Hrushesky, 
"Cancer as a changed tissue’s way of life (when to treat, when to watch and when to 
think)," Future Oncology 12, (2016): 647-657 

70. Li Wenbo, Jin Wang, "Uncovering the underlying mechanism of cancer tumorigenesis 
and development under an immune microenvironment from global quantification of the 
landscape," Journal of the Royal Society Interface 14, (2017): 20170105. 

71. Robert J. Seager, Cynthia Hajal, Fabian Spill, Roger D. Kamm, Muhammad H. Zaman, 
"Dynamic interplay between tumour, stroma and immune system can drive or prevent 
tumour progression," Convergent Science Physical Oncology 3, (2017): 3. 

72. Joseph X. Zhou, Roberto Taramelli, Edoardo Pedrini, Theo Knijnenburg, Sui Huang, 
"Extracting intercellular signaling network of cancer tissues using ligand-receptor 
expression patterns from whole-tumor and single-cell transcriptomes," Scientific Reports 
7, (2017): 8815. 

73. Frank Winkler, Wolfgang Wick, "Harmful networks in the brain and beyond," Science 
359, (2018): 1100-1101. 

74. Jan P. Böttcher, Eduardo Bonavita, Probir Chakravarty, Hanna Blees, Mar Cabeza-
Cabrerizo, Stefano Sammicheli, Neil C. Rogers, Erik Sahai, Santiago Zelenay, Caetano 
Reis e Sousa, "NK cells stimulate recruitment of cDC1 into the tumor microenvironment 
promoting cancer immune control," Cell 172, (2018): 1022-1037. 

75. Shicheng Su, Jianing Chen, Herui Yao, Jiang Liu, Shubin Yu, Liyan Lao, Minghui Wang, 
Manli Luo, Yue Xing, Fei Chen, Di Huang, Jinghua Zhao, Linbin Yang, Dan Liao, Fengxi 
Su, Mengfeng Li, Qiang Liu, Erwei Song, "Cancer-associated fibroblasts promote cancer 



 16 

formation and chemoresistance by sustaining cancer stemness," Cell 172, (2018): 841-
856. 

76. Ranran Zhang, Mithun Vinod Shah, Jun Yang, Susan B. Nyland, Xin Liu, Jong K. Yun, 
Réka Albert, Thomas P. Loughran Jr., "Network model of survival signaling in large 
granular lymphocyte leukemia," Proceedings of the National Academy of Sciences of the 
USA 105 (2008): 16308-16313. 

77. Stefan R. Maetschke, Mark A. Ragan, "Characterizing cancer subtypes as attractors of 
Hopfield networks," Bioinformatics 30, (2014) 1273-1279.  

78. Kristof Z. Szalay, Ruth Nussinov, Peter Csermely, "Attractor structures of signaling 
networks: Consequences of different conformational barcode dynamics and their relations 
to network-based drug design. Molecular Informatics 33, (2014): 463-468. 

79. Anthony Szedlak, Giovanni Paternostro, Carlo Piermarocchi, "Control of asymmetric 
Hopfield networks and application to cancer attractors," PLoS One 9, (2014): e105842. 

80. Chunhe Li, Jin Wang, "Quantifying the landscape for development and cancer from a core 
cancer stem cell circuit," Cancer Research 75, (2015): 2607-2618.  

81. Joseph X. Zhou, Zerrin Isik, Caide Xiao, Irit Rubin, Stuart A. Kauffman, Michael 
Schroeder, Sui Huang, "Systematic drug perturbations on cancer cells reveal diverse exit 
paths from proliferative state," Oncotarget 7, (2016): 7415-7425.  

82. Qin Li, Anders Wennborg, Erik Aurell, Erez Dekel, Jie-Zhi Zou, Yuting Xu, Sui Huang, 
Ingemar Ernberg, "Dynamics inside the cancer cell attractor reveal cell heterogeneity, 
limits of stability, and escape," Proceedings of the National Academy of Sciences of the 
USA 113, (2016): 2672-2677. 

83. Ruoshi Yuan, Suzhan Zhang, Jiekai Yu, Yanqin Huang, Demin Lu, Runtan Cheng, Sui 
Huang, Ping Ao, Shu Zheng, Leroy Hood, Xiaomei Zhu, "Beyond cancer genes: 
colorectal cancer as robust intrinsic states formed by molecular interactions," Open 
Biology 7, (2017): 170169. 


