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Sulphonylurea antidiabetica effectively inhibits the basal hepatic glucose production.
Since it has been firmly established that lipophylic sulphonylurea drugs exerted an uncoupling
effect on mitochondrial oxidative phosphorylation, a relationship between the reduction of
hepatic gluconeogenesis and the insufficient energy supply due to sulphonylureas could be
supposed. In this study we have investigated the effects of glibenclamide and gliquidone on
mitochondrial bioenergetics in liver after peroral treatments of normal rats with different doses.
The treatment of rats with 5 mg/kg glibenclamide or gliquidone daily for 14 days elicited only a
marginal inhibition on mitochondrial oxidation capacity and remained without any effect on
mitochondrial ATPase activity. Only the supermaximal dose 50 mg/kg for 14 day produced a
significant damage in the mitochondrial functions. The basal respiration increased with 60-80
per cent, whereas the ADP- or DNP-stimulated oxygen consumption significantly decreased
independently from the respiratory substrates investigated. Similar alterations were found in the
mitochondrial ATPase activity after treatment with these drugs. No essential differences have
been observed in the actions between glibenclamide and gliquidone.

However, the lowest dose applied in this study is many times higher than the usual
therapeutic dose. Consequently, glibenclamide and gliquidone do not interact with mitochondrial
bioenergetic processes under therapeutic conditions. On the other hand, in different liver and
kidney damages we have no sufficient knowledge whether these drugs can be accumulated in
these organs and therefore their elevated concentration may interfere with the mitochondrial
energy metabolism.
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Sulphonylurea antidiabetic drugs are widely used in treatment of non-insulin
dependent diabetes mellitus to stimulate insulin release from pancreatic cells {1, 2].
This effect is associated with an increased number of insulin receptors [3, 18, 42, 49)
and an enhanced insulin mediated glucose utilization [2, 5, 14, 26, 31, 37]. Further-
more, sulphonylureas reduce the basal hepatic glucose production [5, 26].

Not only the anti-hyperglycaemic action of sulphonylurea but their pharmaco-
kinetics and metabolism have been also intensively studied [6, 7, 10, 11, 21, 22, 28,
43, 44]. The widely used sulphonylureas gliquidone and glibenclamide are rapidly
absorbed, their elimination from plasma occurs also quickly [13, 28, 46]. The
biological half-life proved to be similar in both cases [10, 20, 28]. Both drugs are
extensively metabolized in the liver. Three main metabolites of glibenclamide and four
derivates of gliquidone were isolated. The metabolites had no hypoglycaemic effect.
Elimination of glibenclamide is equally mediated by the urine and faeces. However,
excretion of gliquidone occurs in 90 per cent via bile, in the urine no more than 5 per
cent of its inactive metabolite can be detected [13, 28, 36].

In our previous paper the possible interference of gliquidone and glibenclamide
with mitochondrial bioenergetics was studied [45]. We have established that under in
vitro conditions these sulphonylureas exerted a partial uncoupling effect on
mitochondrial respiration of liver and they inhibited the DNP-activated ATPase and
the substrate uptake into mitochondria. These effects proved to be dose dependent
[45]. Although many changes in mitochondrial functions under in vitro conditions have
been published [15, 32, 34, 45, 47], a detailed analysis of in vivo alteration of
mitochondria following sulphonylurea treatment has not been performed so far. In this
study the effects of glibenclamide and gliquidone on the mitochondrial bioenergetics of
rats are investigated after peroral treatment with different doses of sulphonylurea
tested.

Materials and Methods

Male CFY rats weighing 150-180 g (LATI, G&dslls, Hungary) were used for experiments, The
animals were appropriately housed and fed a corresponding laboratory diet supplemented with vitamin
premix and water ad lib.

The rats were treated with a single dose of 50 mg/kg of the respective sulphonylurea
intraperitoneally, suspended freshly in 1 per cent methylcellulose (Aldrich Chemical Co.). Two hours after
the drug administration the rats were killed and liver mitochondria were isolated. Other groups of rats were
treated with 5 mg or 50 mg/kg drugs per os for two weeks once daily. To control animals only
methylcellulose was administered. All other methods used in this study were described previously [45].
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Results
The influence of gliquidone and glibenclamide on mitochondrial respiration capacity

To test whether gliquidone as well as glibenclamide influence the mitochondrial
ATP generation and therefore the energy dependent metabolic pathways of the cells
under in vivo conditions, their effects were investigated on respiration capacity of rat
liver mitochondria after treatments with different doses of the drugs.

An administration of 5 mg/kg glibenclamide or gliquidone to the rats for 14
days, did not alter the basal as well as the ADP- or DNP-stimulated respiration in
comparison with the control values using different respiratory substrates (Tables I-III).

When a supermaximal dose (50 mg/kg) of gliquidone or glibenclamide was
administered to the rats intraperitoneally, the respiratory parameters of the isolated
liver mitochondria were only slightly affected two hours after the treatment.
Glibenclamide caused a little but measurable increase in the basal respiration,
gliquidone treatment was without effect in the case of all respiratory substrates tested.
In the ADP- as well as DNP-stimulated O,-uptake no changes was observed at these
doses of both drugs (Tables I-III).

Table 1

Mitochondrial respiration of liver mitochondria with glutamate + malate

Oxygen uptake
No. of Pretreatment (nAtom O/mg protein/min)
experiments Basal ADP-stimulated DNP-stimulated RCR
10 Control 14 + 2 195 + 20 188 + 19 13.9
6 5 mg/kg glibenclamide
p.o. 14 days 15+2 196 + 21 186 + 18 13.1
10 50 mg/kg glibenclamide
i.p. 2 hours 17 + 3 198 + 19 191 £ 19 11.6
6 50 mg/kg glibenclamide
p.o. 14 days 23* +3 157% + 17 146* + 15 6.8
6 5 mg/kg gliquidone
p.o. 14 days 14 £ 2 196 £ 18 187 + 18 14.0
12 50 mg/kg gliquidone
i.p. 2 hours 15+2 199 + 18 191 + 19 13.3
6 50 mg/kg gliquidone
p.o. 14 days 23*+3 170* £ 17 164* + 17 7.4

* Significance: p < 0.05
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Table 11

Mitochondrial respiration of liver mitochondria with pyruvate + malate

Oxygen uptake
No. of Pretreatment (nAtom O/mg protein/min)
experiments Basal ADP-stimulated DNP-stimulated RCR
10 Control 10 + 2 102 + 9 98 + 10 10.2
6 5 mg/kg glibenclamide
p.o. 14 days _ 11 +2 102 + 2 98 + 10 9.3
10 50 mg/kg glibenclamide
i.p. 2 hours 1242 98 + 10 86 + 9 8.9
6 50 mg/kg glibenclamide
p.o. 14 days 17* + 3 75* + 9 69% + 8 4.4
6 5 mg/kg gliquidone
p.o. 14 days 11 +2 102+ 9 98 + 9 93
12 50 mg/kg gliquidone
i.p. 2 hours 11 +£2 104 + 10 83+ 9 9.5
6 50 mg/kg gliquidone
p.o. 14 days 18« + 3 76* + 8 71* + 8 42

* Significance: p < 0.05

Table TII

Mitochondrial respiration of liver mitochondria with succinate (in the presence of rotenone)

Oxygen uptake

No. of Pretreatment (nAtom O/mg protein/min)
experiments Basal ADP-stimulated DNP-stimulated RCR
10 Control 40+ 5 290 + 31 264 1 28 7.3
6 5 mg/kg glibenclamide
p.o. 14 days 41 1+ 6 293 + 32 264 + 27 7.1
10 50 mg/kg glibenclamide
i.p. 2 hours 44 + 5 301 + 32 264 + 27 6.8
6 50 mg/kg glibenclamide
p-o. 14 days 47 + 6 239* + 26 201* £ 23 S
6 5 mg/kg gliquidone
p.o. 14 days 4 5 291 + 30 265 + 28 7.1
12 50 mg/kg gliquidone
i.p. 2 hours 41 + 4 297 + 30 239+ 25 7.2
6 50 mg/kg gliquidone
p.o. 14 days 46* + 5 283* 4 31 231* + 25 6.2

* Significance: p < 0.05
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Table IV

ATPase activity of isolated liver mitochondria

No. of Pretreatment ATPasc activity
experiments (umoles Py/mg protein/h)
Basal DNP-stimulated

8 Control 1.74 £ 0.21 18.93 + 2.11
6 5 mg/kg glibenciamide

p.o. 14 days 1.72 + 0.19 18.84 + 2.06
6 50 mg/kg glibenclamide

i.p. 2 hours 1.89 1 0.34 18.61 + 2.43
6 50 mg/kg glibenclamide

p.o. 14 days 2.27 + 0.41% - 12.39 4+ 2.08*
6 5 mg/kg gliquidone

p.o. 14 days 1.69 4+ 0.20 18.96 + 2.10
6 50 mg/kg gliquidone

i.p. 2 hours 1.65 + 0.33 18.90 £+ 2.11
6 50 mg/kg gliquidone

p.o. 14 days 1.97 + 0.34 12.35 + 1.83*

* Significance: p < 0.05

After a treatment of 14 days with the same doses of both glibenclamide and
gliquidone substantial alterations were seen in the mitochondrial respiration. The basal
respiration increased by 60-80 per cent when glutamate or pyruvate with malate were
used as substrates. Interestingly, the one-step oxidation of succinate was elevated less
than 20 per cent under the same conditions (Tables I-III). The ADP- as well as DNP-
stimulated respiration was reduced by 25 per cent maximally. As a result of the
opposite changes of the respiration values with and without added ADP, the
respiratory control ratios decreased significantly. With glutamate or pyruvate in the
presence of malate, the decrease of RCR value exceeded 50 per cent, while the change
in the RCR value with succinate was less pronounced (Tables I-III).

Effect of gliquidone and glibenclamide on the mitochondrial ATPase activity

Gliquidone and glibenclamide induced similar changes of the ATPase activity of
liver mitochondria to those of the respiration. After two hours of the intraperitoneal
administration of 50 mg/kg glibenclamide or gliquidone, no substantial alteration of
mitochondrial ATPase activity was observed. Similarly, no changes in ATPase activity
of mitochondria were observed when 5 mg/kg of the drugs were administered to the
rats for 14 days (Table IV). A treatment of 14 days with supramaximal dose
(50 mg/kg) of the drugs caused a 15-30 per cent increase in the basal ATPase activity
and a near 40 per cent reduction in the DNP-stimulated ATPase activity (Table IV).
No significant difference was observed between gliquidone and glibenclamide in their
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inhibitory potential upon mitochondrial ATPase. The alterations in mitochondrial
ATPase activities observed supported further a potential damage of structural integrity
of mitochondria due to sulphonylureas under in vivo conditions.

Discussion

In the last more than 30 years sulphonylurea compounds have been widely used
in the treatment of patients with non-insulin-dependent diabetes mellitus. These drugs
act at both pancreatic and extrapancreatic sites. However, it seems likely that the initial
and quantitatively most important action of the sulphonylureas is the stimulation of
insulin secretion [3, 9, 12, 19, 27, 30]. Among the extrapancreatic effects the
reduction of hepatic glucose production and the increase of the insulin dependent
glucose uptake into the insulin sensitive tissues are the most important [2-4, 8, 11, 16,
40, 48]. Using cultured rat hepatocytes the stimulation of glycogenesis and lipogenesis
under influence of sulphonylurea drugs was also observed [14, 17, 37, 38, 39, 41]. In
the hepatic glucose production the gluconeogenesis plays the cardinal role. This
process involves both the mitochondrial and cytosolic compartments of the cells and
can be influenced at many different sites. The transport of metabolites between cytosol
and mitochondria, the availability of precursor molecules and reducing equivalents,
and the supply with ATP are probably the most important factors which can alter the
intensity of the gluconeogenesis. On the other hand, the actual concentration of
fructose 2,6-bisphosphate determines the direction of metabolic processes to synthesis
or to degradation of glucose. For the synthesis and breakdown of fructose
2,6-bisphosphate the same bifunctional enzyme is responsible, the phosphorylated state
of this enzyme determines in which direction the enzyme acts. It was demonstrated
from many sites that sulphonylureas can stimulate fructose 2,6-phosphate formation in
liver even in streptozotocin induced diabetic rats [4, 23-25, 33, 35].

The energy supply of gluconeogenesis meet demands by the intensive oxidation
of fatty acids as well as citrate cycle intermediates in mitochondria. Different
uncouplers of oxidative phosphorylation increase the utilization of mitochondrial
metabolites without utilisable energy production. In the previous paper we have
demonstrated that sulphonylurea compounds can cause a partial uncoupling of
oxidative phosphorylation [45]. This finding was supported by earlier observations,
too [15, 32, 47]. Sulphonylureas can penetrate through plasma membrane and are
detectable also in mitochondria [46]. It can be supposed that the mitochondrial inner
membrane can bind the lipophyl sulphonylurea compounds and the non-specific
interference with the lipid bilayer can cause disturbances in the function of the integral
membrane proteins.

Although the therapeutic dose is less for glibenclamide than for gliquidone, we
have not found a significant difference in their inhibitory capacity upon mitochondrial
bioenergetic processes either in vitro or in vivo. The daily treatment with 5 mg
glibenclamide or gliquidone/kg of the normal rats for 14 days elicited only a marginal
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inhibition in the mitochondrial oxidation capacity. Only the supermaximal dose from
these drugs (50 mg/kg) produced a significant inhibition of oxidative parameters. The
concentrations of sulphonylureas investigated in this study are not comparable with the
usual therapeutic doses, therefore the relevance of the mitochondrial effects to human
clinical pharmacology remains to be clarified. Certainly, our results suggest that both
gliquidone and glibenclamide do not interact with the mitochondrial bioenergetic
processes in therapeutic dosages under in vivo conditions. However, in different liver
or kidney damages we have no sufficient information whether these drugs can be
accumulated, and therefore their local concentration may interfere with mitochondrial
bioenergetics in these organs.
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