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Precision oncology relies on predictive biomarkers for selecting targeted cancer therapies. Network-
based properties of proteins, together with structural features such as intrinsic disorder, are likely to
shape their potential as biomarkers. We therefore designed a hypothesis-generating framework that
integrates network motifs and protein disorder to explore their contribution to predictive biomarker
discovery. This encouraged us to develop MarkerPredict by using literature evidence-based positive
and negative training sets of 880 target-interacting protein pairs total with Random Forest and
XGBoost machine learning models on three signalling networks. MarkerPredict classified 3670 target-
neighbour pairs with 32 different models achieving a 0.7-0.96 LOOCYV accuracy. We defined a
Biomarker Probability Score (BPS) as a normalised summative rank of the models. The scores
identified 2084 potential predictive biomarkers to targeted cancer therapeutics, 426 was classified as
a biomarker by all 4 calculations. We detailed the biomarker potential of LCK and ERK1. This study
encourages further validation of the high-ranked predictive biomarkers. The development of the
MarkerPredict tool (which is available on GitHub) for predictive biomarker identification may have a

significant impact on clinical decision-making in oncology.

With the emergence of personalised medicine, advanced molecular diag-
nostics gained a substantial role in daily medical practice. Choosing between
different expensive targeted therapeutics with often serious side effects is a
difficult decision, which is frequently helped by detecting the mutation of the
targeted protein as a predictive biomarker. However, the question of therapy
resistance cannot always be answered with a yes-or-no answer, so this is
where the importance of other predictive biomarkers identifying individuals
with a favourable or unfavourable drug response comes into play'. The
mutational status and expression level of additional proteins on the same
pathway may affect the efficacy of the targeted therapeutics, as famous
examples show. For instance, BRAF mutations can cause therapy resistance
to EGFR inhibitors in colon cancer’, and somatic or germline BRCA
mutations can show sensitivity to PARP inhibitors in multiple cancer types’.
These diagnostic steps may detect patients with intrinsic or acquired therapy
resistance, thus sparing them from unnecessary side effects and helping
them finding the most effective treatment option”.

Intrinsically disordered proteins (IDPs) are proteins that have regions
without tertiary structures. Their special structure could have contributed to
their role as biomarkers in the pathogenesis of certain common diseases,
such as neurodegenerative diseases’’, myocardial ischaemia’, fibrosis’ and

amyloidosis'’. Some IDPs were also discovered to be cancer biomarkers'' ™,

such as CETN1 in prostate and pancreatic cancer'. Cancer testis antigens,
which are implied to be IDPs themselves such as CETN1, may also be good
cancer biomarker candidates'. Flexibility of IDPs to establish new con-
nections may contribute to their important role in cancer signalling'®"".
However, there were no articles directly discussing the role of IDPs as cancer
biomarkers at the system level which prompted us to examine the potential
use of target-related IDPs as predictive biomarkers of cancer using system-
level signalling networks. System-wide coverage of IDPs is especially
important, since IDPs are very challenging to target pharmacologically,
which sets a limit to their prospects as drug targets'®.

Network topology is an area of network science describing the con-
nection structure of a network consisting of nodes and edges"”, which are in
this case proteins and the interactions between them. This framework is
widely applied in different biomedical research®”, and is especially often
used on cancer signalling networks to find proteins or modules responsible
for important biological processes such as metastasis formation>*. Topo-
logical studies showed that IDPs are key players in the information flow of
the signalling networks, while they strongly interact with the most central
nodes. However, the papers did not further characterise these
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interactions'”*". Network motifs (ie. small subnetworks having a sig-
nificantly higher abundance than that in random networks) are important
hotspots in the regulation of signalling networks™”. Participation in
interconnected motifs often indicates a stronger regulatory relationship
between two nodes, than just a simple interaction”. In this paper, as a
hypothesis-generating framework, we explored the simplest network motifs,
i.e. three-nodal triangles that contain both biomarkers and oncologic targets
as network topological models of their frequent co-regulation. This allowed
us to screen target-interacting proteins on a system level as potential pre-
dictive biomarkers, defined as a protein or gene whose expression level or
mutational status can help predict sensitivity to a certain drug. Our working
hypothesis was that protein disorder and protein position in signalling
networks may contribute to the efficacy of the prediction of predictive
oncological biomarkers.

To establish an efficient ranking of oncogenic target-neighbour pairs,
we used the more interpretable decision tree-based machine learning
models, such as Random Forest™® and XGBoost”, which were already suc-
cessfully used on different biomedical data®*"'. Training and classification
were carried out by using topological information of the signalling networks
and protein annotations, supplementing the mechanistic description of
network signalling with real life biological data for the optimisation of our
models’ decision-making. This included comprehensive data of three dif-
ferent IDP databases and prediction methods, namely DisProt™,
AlphaFold™ and TUPred™. To sum up the power of the machine learning
predictions in a single number, a Biomarker Probability Score (BPS) was
established to help the ranking of potential biomarkers by our Marker-
Predict method.

Results

Intrinsically disordered proteins are enriched in triangles

As an initial step of our study, we identified the motif characteristics of those
IDPs which were listed in the DisProt’ database as illustrated in Fig. 1a.
Three signed subnetworks (i.e. network segments containing positive and
negative links) with greatly differing network topological characteristics (see
Supplementary Table S1) from the Human Cancer Signaling Network (CSN
network)”, SIGNOR™ and ReactomeFI’” were used for the analysis. Three-
nodal motifs were identified with the FANMOD programme, followed by
the selection of triangles, ie. fully connected three-nodal motifs for the
analysis (see ‘Methods’ and Supplementary Table S1). Rare regulatory
motifs, such as unbalanced triangles and cycles were also identified due to
their special role in signalling networks.

After obtaining the list of the IDPs and oncotherapeutic targets (as
detailed in Methods), they were identified in the triangles. Triangles con-
taining both DisProt™ IDP and target members were separately analysed as
special hot spots in signalling networks. Unbalanced triangles, i.e. triangles
with odd number of negative links were significantly overrepresented
among these, while cycles were only in the CSN and SIGNOR networks (see
Supplementary Fig. S1). These IDP-target triangles exist with a much larger
frequency than they would with a random chance (see Fig. 1b and Sup-
plementary Fig. S1). Very importantly, this enrichment was also true
withAlphaFold (average pLLDT<50) and IUPred (average score>0.5)
defined IDPs. Having a common motif is usually an indicator of a very close
regulatory connection between two nodes in network science, and motif
structures can even be used to predict new drug targets”. As an ideal pre-
dictive biomarker must show when conditions affecting the efficacy of the
respective drug occur™®, within ideal condition they must also affect or be
affected by the change of signalling in the drug target’s pathway. One way to
achieve that is to be in the same signalling pathway, which is the case with
some famous biomarkers, such as BRAF for EGFR inhibitors in colon
cancer’. In our method, instead of traditional depiction of signalling path-
ways, participating proteins are represented in a simplified manner in the
form of three-nodal motifs. Thus, as three-nodal motifs usually represent a
part of a signalling pathway, the hypothesis of these IDPs being predictive
biomarkers for the drugs targeting their triangle neighbour (called as TDP-
target-pairs” throughout the paper, where pairs were included regardless of

the sign and direction of the connecting links) emerged. To broaden the
scope of this study, all neighbours of the targets found in the networks were
included in the analysis with their respective target pairs (called as ‘neigh-
bour-target-pairs” throughout the paper).

Intrinsically disordered proteins are likely to be cancer
biomarkers

To evaluate this hypothesis, the biomarker properties of the IDPs were
annotated using the CIViCmine text-mining database (as described in
Methods in detail). The database annotated separately prognostic, predis-
posing, diagnostic and predictive biomarkers. The results show that in all
three networks, more than 86% of the IDPs were prognostic biomarkers,
with high ratios of all the other biomarker types (see Fig. 1¢). CIViCmine has
biomarker data for 12 452 different proteins.

Cases when the disordered protein was the predictive biomarker for its
target triangle pair were annotated and manually reviewed. These were
handled as positive controls (class 1) in the training dataset for the machine
learning model (see Section 3.5.). Altogether, in 332 cases of the 4550
neighbour-target pairs the neighbour member of the pair was an established
predictive biomarker for the drug targeting its target pair. This is a con-
vincing subset considering the specificity of this attribute. To evaluate those
4223 neighbour-target pairs where the neighbours were not predictive for
their target in the CIViCmine database”, a negative control dataset was also
established from the neighbour proteins not present in CIViCmine and
random pairs (see ‘Methods’), and machine learning models were estab-
lished for a binary classification.

High-performing machine learning models are established for
prediction

After constructing the training dataset, both Random Forest and XGBoost
binary classification methods were trained on both the network-specific and
the combined data of all 3 signalling networks, and on the individual and the
combined data of all 3 IDP-databases and prediction methods resulting in
thirty-two different high-performing models (see ‘Methods’ and Supple-
mentary Table S4). The optimal hyperparameters were set with competitive
random halving (see Supplementary Text S1). During the optimisation
process, the predictive power of these models was thoroughly investigated.

High performance with validation methods. The strength of the
models was evaluated with multiple validation methods. Leave-one-out-
cross-validation (LOOCYV), k-fold cross-validation and validation with
the 70:30 splitting of the training and test dataset were used. All the
models produced good metrics with the established hyperparameter
settings, even those trained on the smaller DisProt database had an
acceptable performance(see Fig. 1d and Supplementary Table S4).

The Random Forest algorithm marginally underperformed compared
to XGBoost. The models performed less well on the CSN network, which
could be explained by its smaller number of nodes and links. Overall, due to
their high AUC, accuracy and F1-score with validation methods, all models
were evaluated to be precise enough for the inclusion in the final classifi-
cation of neighbour-target pairs. As the used IDP-database DisProt™, and
prediction methods AlphaFold* and IUPred* were not correlating strongly
(see Supplementary Fig. S2), four (three individual and one combined)
predictions were conducted.

To harmonise the probability values of the final prediction, the
normalised average of the ranked probability values was defined as the
BPS. To estimate the discriminative strength of the Biomarker Pre-
dictability Score, during the LOOCV on the test dataset (for the
combined prediction), the predicted probability value for each data
point of the test dataset was exported to carry out BPS calculation with
the same method described above. Comparing this probability value
with the original class of the neighbour-target pair (see Fig. le), they
correlate well, with altogether 88 wrong classifications out of the 880
originally classified neighbour-target pairs (10%) all having BPS values
around the average.
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The machine learning approach is widely applicable. To address the
predictive power of different groups of input features, XGBoost and
Random Forest LOOCYV models were trained on each group of features.
Both the group of biological and topological features reached the accu-
racy of 0.86 (see Supplementary Fig. S3). Models trained on different
small groups of topological parameters, such as centrality data or motif
parameters also reached high accuracy values. This shows that with the
use of only network topological data as input effective biomarker iden-
tification is still possible.

The MarkerPredict method described in this paper may be used on
other networks than the three signalling networks it was developed on.
Systematic cross-training among the networks, ie. training on one and

testing on another one was implemented to model this scenario. Consistent
high performance was achieved between the two largest networks: Reac-
tomeFI and SIGNOR (see Supplementary Fig. S5), although the DisProt
database’s model showed worse performance. Reducing the training dataset
to topological parameters worsened the metrics in most of the cases.
However, with larger, similarly structured networks and abundant data, this
method may be useful to predict novel predictive biomarkers of unknown
networks.

Disorder content as one of the most important input features. Fea-
ture importance analysis was conducted by using the SHAP package,
which uses a game theory-based Shapley values to assess the
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Fig. 1 | A step-by-step approach to the network-topology-based identification of
predictive oncotherapeutical biomarkers. a A 5-step flowchart of the Marker-
Predict process. In the first two steps, the network topology analysis process is
detailed. After the identification of IDP-target pairs, the next step is protein anno-
tation to establish the final input dataset. Then, machine learning models are trained,
and the classification of the unlabelled data is carried out. As a final step, the pre-
dicted predictive biomarkers are reviewed with the scope of potential medical usage.
b Step 1.-2.: Sankey-diagram of the identified triangles in the ReactomeFI"” network.
3.04% of the triangles contained DisProt-defined IDPs or targets. Based on the
number of DisProt IDP and target members in triangles, the random chance for
IDP-target triangles can be calculated. Comparing this value with the actual ratios,
IDP-target triangles are overrepresented in every network. The DisProt enrichment
ratio is 11.91 in ReactomeFI (highlighted), 5.66 in CSN* and 4.86 in the SIGNOR™
network. For AlphaFold IDPs (defined as pLLDT < 50), it is 5.48, 6 and 1.7, for
IUPred long score>0.5 it is 6.1, 5.88 and 3.74, and for short score > 0.5 it is 3.98, 7.41
and 3, respectively. ¢ Step 3.: The biomarker properties of neighbours of targets in

triangles including cancer drug targets. The majority of neighbours (86.6% to 96.3%)
were biomarkers according to the CIViCmine database. Among predictive bio-
marker neighbours, a considerable ratio is established as a predictive biomarker of a
drug which has its target in a shared triangle with the particular protein. d Step 4.:
Receiver operation characteristic (ROC) curve of hundred 5-fold cross-validation
with the XGBoost” model trained on the combined data of CSN, SIGNOR and
ReactomeFI networks, on the data of all 3 IDP databases and prediction methods.
The model reached high performance, with the average area under curve (AUC) of
0.99 +0.01 (marked with red). Other validation models also showed high perfor-
mance (see Supplementary Table S3). e Step 5.: The Biomarker Probability Score
(BPS), a rank score calculated from prediction probabilities (for the definition see
Fig. 2) versus the original label of the training dataset. This figure shows the BPS
score calculated with the models trained on all 3 IDP databases and prediction
methods. In the order of growing BPS values (marked with red), the original labels
are showed with grey shadowing. The large correlation is visible, with a few differing
labels around average BPS values.
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Fig. 2 | Correlation heatmap of classification probability values of eight different
models and the Biomarker Probability Score (BPS) on the data of all 3 IDP
annotations. Each of the XGBoost” (XGB) and the Random Forest™ (RF) models
were trained on the three individual network-specific data of CSN**, SSIGNOR*, and
ReactomeFI”, as well as on the combined data of all three networks. Probability
values of classifying the particular target-neighbour as a predictive biomarker for the
respective target (i.e. class 1, see main text for definition) were gained from the eight
different machine learning models. BPS was calculated according to the two equa-
tions shown on the right side of the figure from the normalised average of the ranks

of probabilities. Four separate BPS values were calculated using models trained on
the data from DisProt™, AlphaFold*, IUPred*, and a combined dataset. The values
shown in this figure correspond to the model trained on the combined dataset.
Ranking of biomarker probability values was performed in ascending order. In case
of identical probabilities, the average of the consecutive ranks was given. In the
equations A,, is the average of the ranks for a given neighbour-target pair p, and mis
the number of all predictions. Finally, the correlation matrix was created from the
probability values and BPS, which is shown on the figure. As shown, BPS had strong
unbiased correlation with each prediction within the range of 0.71-0.8.

importance of each feature. The SHAP plots show (see Supplementary
Fig. S6) that the values of the IDP databases and prediction methods are
important input features. The centrality values and the number of
different type of triangles reached high values. For the abovementioned
topological parameters, higher feature values meant higher SHAP
values. In some cases, neighbour pairs with low or moderate disorder
content are more likely to be predictive biomarkers, while for the
IUPred short predictions, larger disorder content further increase this
likelihood.

To summarise, IDPs are more likely to be biomarkers, and IDP dis-
order data is an important input feature of predictive biomarker prediction.

However, the exact translation of this depends on the score or feature in
question.

Identified potential predictive biomarkers

After the final predictions with the eight different models, the Biomarker
Predictability Score (BPS) was calculated for each of the neighbour-target
pairs combined and for each IDP annotation (see Section 3.5-6.) The BPS
score was able to bridge the difference among the probability calculation
methods of the XGBoost and Random Forest algorithms and different
networks (see Fig. 2). In 2084 neighbour-target pairs the neighbour could be
classified as potential predictive biomarker for the respective target, if we
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consider a threshold of BPS score larger than 0.5 for at least one of the four
calculation (see Supplementary Table S5). 426 pairs had a BPS above 0.5 for
all calculations. For many of the pairs with top BPS values, preclinical or
clinical literature was found supporting the machine learning prediction
(see Table 1). The top 5 prediction for each BPS score calculation contained
targets of mainly small molecule receptor or HER2 inhibitors, where the
neighbour had a low to medium disorder content. Two of these predictions,
LCK and ERK1 are discussed in detail in the further part of this section, with
four additional examples, CREB, integrin f1, Notch1l and B-catenin which
are lowlier ranked but interesting from a medical standpoint, are in the
Supplementary Material (see Supplementary Figs. S6, S10). The fact, that
even lower ranking (but well-above the threshold) hits are also good
examples for biomarker candidates, shows the usefulness of our full list of
2084 potential biomarkers (Supplementary Table S5).

LCK as a potential predictive biomarker for EGFR inhibitors. LCK was
predicted by the MarkerPredict model to be a potential predictive bio-
marker for EGFR inhibitors, achieving the highest BPS with the models
trained on all 3 IDP annotations. The BPS 4, score of the LCK-EGFR
pair was 0.998, and all available 24 models confidently classified LCK as a
class 1 predictive biomarker. The BPSajpharola Was 0.969, and the
BPS1uprea Was 0.979, and this pair was not in the DisProt database. In the
ReactomeFI network, LCK stimulates EGFR, and they are involved in 53
shared triangle motifs. The motif subnetwork contains both direct reg-
ulatory edges and indirect feedback structures, as visualised in Fig. 3a.
Both LCK and EGFR showed non-zero centrality values in all three
networks. While LCK is not part of CIViCmine as a predictive biomarker
for EGFR inhibitors, previous clinical studies have shown its correlation
with treatment outcomes.

EGEFR is a well-characterised oncogenic receptor tyrosine kinase in
non-small cell lung cancer, colon cancer and several other malignancies.
Numerous drugs target EGFR, including afatinib, cetuximab, erlotinib,
gefitinib, lapatinib, necitumumab, osimertinib, panitumumab and vande-
tanib. EGFR activation triggers downstream signalling through the MAPK,
PI3K-AKT, and JAK-STAT pathways. LCK is a Src family tyrosine kinase
that is known for its role in T-cell signalling but is increasingly recognised for
its function in epithelial cancers, including lung and breast cancers®. LCK is
also known to interact with cytoskeletal and adhesion-associated proteins".
Clinical evidence indicates that LCK expression correlates with response to
targeted therapies, including EGFR- and HER? inhibitor lapatinib®. It is
interacting with EGFR in cholangiocarcinoma, contributing to the syner-
gistic effect of their dual inhibition*’. LCK is a validated IDP, with a disorder
content of 7% in DisProt” and 11% based on AlphaFold™ predictions,
showing that IDPs with low-moderate disorder content can be suitable
predictive biomarkers.

ERK1 as a potential predictive biomarker for BCL-2 inhibitors.
Among the novel predictions of the MarkerPredict framework, ERK1
(MAPK3) was identified as a potential predictive biomarker for BCL2
inhibitors, including venetoclax. The BPSpjsp,o, score of the ERK1-BCL-
2 pair was 0.980, and it has high, >0.823 BPS scores with other predictions
with other IDP annotations too - the pair was consistently predicted as
class 1 in all 32 models. ERK1 and BCL-2 are connected via multiple
shared neighbours, forming 44 triangular motifs in ReactomeFI, and 6
motifs in SIGNOR. Both ERK1 and BCL2 displayed non-zero centrality
across the networks. While BCL-2 is a well-known drug target in hae-
matological malignancies, ERK1 has not previously been described as a
predictive biomarker for BCL-2 inhibition in any annotation.

BCL-2 is an anti-apoptotic protein involved in mitochondrial outer
membrane integrity, and its inhibition by venetoclax serves as a therapeutic
option in chronic lymphocytic leukaemia, acute myeloid leukaemia, and
other diseases. Resistance to venetoclax often emerges through compensa-
tory upregulation of other anti-apoptotic proteins, particularly MCL-1,
which is stabilised by ERK1 activity*. ERK1, as part of the MAPK cascade,
regulates transcription factors and phosphorylates pro-apoptotic BCL-2

family members such as BIM, BAD, and BAX". In preclinical models,
inhibition of other proteins as MAPK signalling such as MEK1/2 inhibitor
binimetinib sensitised cells to venetoclax®, suggesting that ERK1 levels or
activity also might influence response to BCL-2 inhibition. ERK1 has a
moderate disorder content of 6.5-12% across the disorder predictors used,
which corresponds with the disorder content range observed in many top-
scoring predictions. Also, it fits the trend that higher IUPred short disorder
content may raise the chance to have a higher BPS.

Although ERK1 is not currently recognised as a clinical biomarker for
BCL-2-targeted therapy, its central position in apoptosis regulation and role
in adaptive resistance mechanisms make it a promising candidate. Further
investigation into ERK1 expression or activity status in venetoclax-treated
patients may clarify its potential utility as a predictive biomarker.

Discussion

With the emergence of advanced therapeutics in oncology, good pre-
dictive biomarkers became essential for therapeutic decision-making”.
In this work, we propose that protein disorder and protein position in
signalling networks may contribute to predictive biomarker prediction
due to IDPs importance in cancer signalling and key position in sig-
nalling networks, namely, their closeness to the targets of oncother-
apeutical drugs™. As we showed, IDPs are overrepresented as target-
neighbours, and most of these neighbours in our networks are already
established prognostic biomarkers (Fig. 1¢). These disordered regions
also help proteins to be highly adaptable to the changing environment,
allowing phenotype switching as a method of adaptation in cancer'’.
Disordered driver genes often have mutations in their disordered
regions'’. All of this suggests that the mutation or the change of
expression of disordered proteins may highlight important phenotypic
changes in cancer cells, which may also include therapy resistance.

As disordered regions contribute substantially to the emergence of the
attributes of good predictive biomarkers, it was one of the goals of this work
to determine the optimal disorder content ratio for being a good candidate.
The SHAP analysis of our machine models highlighted disorder content as
one of the most important input features, regardless of the annotation used.
The ‘ideal’ IDP disorder content is not clear and very annotation- and
model-dependent, however, our data shows that IDPs with small disorder
content can also be good predictive biomarkers, such many of our top
biomarker predictions (see Table 1), which may be explained by some earlier
observations. Even IDPs become more ordered upon binding to their
partners, however, they retain a certain, moderate level of disorder, called
‘fuzzyness’™. Fuzzyness allows the rewiring of signalling networks and the
development of functional switches*, which are key features of cancer
accommodation. On the other hand, proteins having ordered domains with
established tertiary structures may participate in signalling as traditional
signalling proteins, while their disordered regions allow them to make novel
connections and to quickly adapt to the frequent changes of the environ-
ment in cancer and its treatment. This duality, combined with participation
in close co-regulatory motifs with drug targets may explain the models’ top
predictions with low-moderate disorder content. However, further studies
are needed to explain the molecular and structural background of this
phenomenon.

With the MarkerPredict method, we established a high-accuracy
binary classification algorithm for the prediction of new predictive
biomarker-therapy target pairs based on network topological and protein
annotation data. This approach is novel. However, many algorithms were
developed to classify and analyse biomedical data®. Here we show a few
examples of the Random Forest and XGBoost algorithms used in cancer
research and biomarker identification.

Random Forest is a widely spread algorithm for classification problems
in biomedical sciences. Translocatome, a high-performing random forest
classifier was used on network data to predict protein translocation™.
RepCOOL, a network-based drug reposition algorithm by using random
forest reached the AUC of 0.83°°. In another study, different random forest
methods’ performance was compared, while using omics data for biomarker
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Table 1| Top 5 neighbour-target pairs with the highest Biomarker Probability Score (BPS) for 3 different IDP annotations and for
the models of the combined annotations

Ng Biomarker Neighbour name  Annotation disorder content (%) Target name Inhibitor(s) of target Supporting literature
Probability
Score (BPS),
combined
/annotation-
specific
DisProt  AlphaFold  IUPred (long) IUPred (short)
ALL ANNOTATIONS
1. 0.998 LCK 71% 1% 3.1% 3.9% EGFR afatinib, cetuximab, erlotinib, Clinical: Pizzamiglio et al.*,
gefitinib, lapatinib, necitumumab,
osimertinib, panitumumab,
vandetanib
2. 0.991 LCK 71% 1% 3.1% 3.9% PDGFRB regorafenib, axitinib
3. 0.990 ITGB1 5.9% 3.8% 5% 6.6% EGFR afatinib, cetuximab, erlotinib, Preclinical: Gu et al.”®,
gefitinib, lapatinib, necitumumab,
osimertinib, panitumumab,
vandetanib
4. 0.990 ERK1 6.1% 6.5% 6.6% 12% FGFR3 ponatinib Preclinical: Matsuda et al.”,
59 0.987 STAT1 5.5% 6.1% 6.8% 6.9% EGFR afatinib, cetuximab, erlotinib, Preclinical: Yang et al.”®,
gefitinib, lapatinib, necitumumab, Clinical: Srivastava et al., 2016
osimertinib, panitumumab,
vandetanib
DISPROT
1. 0.991 ERK1 6.1% 6.5% 6.6% 12% BRAF dabrafenib, vemurafenib Preclinical: King et al.””,
2. 0.988 ERK1 6.1% 6.5% 6.6% 12% RAF1 regorafenib, sorafenib Preclinical: Cao et al.”®,
3. 0.987 ERK1 6.1% 6.5% 6.6% 12% HER2 trastuzumab, pertuzumab, ado- Preclinical: Li et al.”,
trastuzumab emtansine, lapatinib,
neratinib, afatinib
4.  0.984 SRC 16% 14% 16% 14% RAF1 regorafenib, sorafenib
5. 0.980 ERK1 6.1% 6.5% 6.6% 12% BCL-2 venetoclax
ALPHAFOLD
1. 0.979 TRAF6 N/A 12% 4.4% 4.2% HER2 trastuzumab, pertuzumab, ado-
trastuzumab emtansine, lapatinib,
neratinib, afatinib
2. 0976 PRKCA N/A 8.6% 9.1% 11% HER2 trastuzumab, pertuzumab, ado- Preclinical: Pandya et al.®’,
trastuzumab emtansine, lapatinib,
neratinib, afatinib
3. 0976 JNK N/A 14% 17% 19% HER2 trastuzumab, pertuzumab, ado- Preclinical: Itah et al., 2023%'
trastuzumab emtansine, lapatinib,
neratinib, afatinib
4. 0.974 NFkB N/A 26% 20% 15% MTOR everolimus, temsirolimus Preclinical: Xie et al., 2007%*
5. 0973 LCK 71% 1% 3.1% 3.9% PDGFRB regorafenib, axitinib
IUPRED
1. 0.993 FYN N/A 15% 7.3% 8.2% EGFR afatinib, cetuximab, erlotinib, Preclinical: Kim et al.*,
gefitinib, lapatinib, necitumumab,
osimertinib, panitumumab,
vandetanib
2. 0.990 ERK1 6.1% 6.5% 6.6% 12% HER2 trastuzumab, pertuzumab, ado- Preclinical: Li et al.”®,
trastuzumab emtansine, lapatinib,
neratinib, afatinib
3. 0.987 TRAF6 N/A 12% 4.4% 4.2% EGFR afatinib, cetuximab, erlotinib,
gefitinib, lapatinib, necitumumab,
osimertinib, panitumumab,
vandetanib
4. 0.986 ERK1 6.1% 6.5% 6.6% 12% JAK2 ruxolitinib Preclinical: Stivala et al.*,
5. 0.983 STAT1 5.5% 6.1% 6.8% 6.9% EGFR afatinib, cetuximab, erlotinib, Preclinical: Yang et al.”®,

gefitinib, lapatinib, necitumumab,
osimertinib, panitumumab,
vandetanib

Clinical: Srivastava et al., 2016

BPS was calculated from the 8 predictions (two machine learning algorithms on three signalling networks and their total) on the unlabelled dataset. Disorder content was identified from the DisProt*

database and the AlphaFold* and IUPred* prediction methods, while corresponding drugs were listed from the My Cancer Genome®’ database. Supporting literature was identified in PubMed using the
drug and IDP names as keywords. Articles explaining a rationale leading to predictive biomarker properties were selected, along with articles where the effectivity of the drug could be estimated from the
mutation status or expression level of the IDP. When there was, one example article of preclinical, and one with clinical evidence was cited.
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Fig. 3 | The detailed examples of top predicted biomarkers. Network motifs
containing the LCK-EGFR IDP-target pair, and the common neighbours of LCK and
EGFR in the ReactomeFI network. a The IDP target pair participated in 53 triangles.
b ERKI1 as a potential biomarker for the BCL-2 inhibitor venetoclax. ERK1, as a
member of the MAPK pathway, inhibits the mitochondrial apoptotic process
through the phosphorylation of various regulators. The stabilization of MCL-1led to

venetoclax resistance. The inhibition of MEK1/2 with binimetinib has synergistic
effects with venetoclax in preclinical models. Positive interactions are highlighted
with red, negative interactions with blue. The interactions in ReactomeFI are shown
with a full, and the ones from the literature with a dashed line. The predicted four
BPS values are highlighted in the right corner of the figure.
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selection”'. Random Forest showed higher performance than XGBoost in a
study to identify lung cancer- specific biomarkers™.

The Random Forest algorithm was also used in clinical classificatory
problems. Weighted correlation network analysis was used to build a ran-
dom forest model to predict anti-PD1-therapy response in melanoma™,
reachingan AUC of 0.71 on the validation set. Random forest was also used
to predict CDK4/6 inhibitor and endocrine therapy efficacy based on bac-
terial species in faecal microbiome of metastatic breast cancer patients™, and
to characterise endocrine therapy resistance to identify pre-adapted breast
cancer cells based on differently expressed biomarkers™. It was shown to be
capable to identify predictive biomarkers of radiotherapy sensitivity in rectal
cancer™.

XGBoost was used somewhat less frequently on both biological and
clinical data. Multiple different machine learning algorithms were used to
predict anti-PD1-therapy response in non-small cell lung cancer, where the
XGBoost model reached the AUC of 0.824 in cross-validation”. XGBoost
was the highest performing model when used in the validation of hub genes
in gastric cancer and healthy gastric tissue, reaching an accuracy of 89% on
the test set™. In comparison, despite the small training dataset of 880
annotated neighbour-target pairs, achieving high AUC values with a
combined 96% accuracy with LOOCV with both Random Forest and
XGBoost algorithms is noteworthy, outperforming many of the above-
mentioned models.

We believe that the good AUC metrics we received may be a result of
the use of protein pairs for the prediction instead of classifying single pro-
teins. This increases data variety and gives the decision tree-based model
more possibilities to construct the optimal decision tree. Previous studies
also used pairwise analysis approaches with good but less outstanding
results; however, they usually did not limit the search on previously estab-
lished network neighbours™®. In principle, the high AUC values we
obtained may show overfitting, as it is a common issue in machine learning,
especially in models trained on small sample sizes®". Thus, we implemented
rigorous cross-testing methods such as LOOCV and cross-training among
the network to prove the strength of our models in various conditions. Our
data show that our model highly performs not only the training dataset, but
also on previously unseen data, which is in contrast with the behaviour of
overfitted models®'. As a next step to avoid overfitting, we created thirty-two
models using two classification algorithms, three IDP-databases and pre-
diction methods and three networks, followed by homogenising their pre-
dictions into four different BPS to minimise the importance of a potential
overfitting of one model on network-specific data. Thus, while overfitting
remains a significant consideration, this study has implemented precau-
tionary measures to mitigate this concern, affirming the validity of our
performance results.

A critical concern was whether the use of the manually curated, but
sparse DisProt alongside the AlphaFold and IUPred prediction methods
might bias the results due to different underlying methodologies, especially
as the methods do not correlate perfectly with each other (see Supple-
mentary Table S2). To address this, we compared the predictions across all
three resources. As shown in Table 1, the top-ranked DisProt-based pre-
dictions exhibited strong agreement with those derived from AlphaFold and
IUPred, with BPSs consistently above 0.8 across methods. For example, the
top DisProt-derived pairs (ERK1-BRAF, ERK1-RAF1, ERKI-ERBB2,
SRC-RAFI, ERK1-BCL2) were also classified with high confidence by the
other methods, supporting their robustness as predictive biomarker can-
didates. This high level of consistency justifies our decision to use both
curated and predicted date of protein disorder. Consequently, excluding
DisProt from the study would lead to a loss of relevant information; while
including it strengthens the hypothesis-generating framework by integrat-
ing both curated and predictive disorder evidence. Taken together, these
results confirm that the integration of multiple disorder annotation methods
is justified and enhances the robustness of MarkerPredict’s biomarker
prediction.

Two examples illustrate how the MarkerPredict framework identifies
both established and novel predictive biomarker candidates. The first is

LCK, a Src-family kinase predicted as a biomarker for EGFR inhibitors. LCK
is involved in cytoskeletal organisation and integrin signalling and has been
shown to support compensatory EGFR signalling in cholangiocarcinoma*
Its predictive role has also been supported in clinical cohorts of lapatinib-
treated breast cancer patients®, further validating the model’s performance.
The second example is ERK1, a novel prediction as a biomarker for BCL2
inhibitors such as venetoclax. While not currently used as a clinical bio-
marker, ERK1 regulates multiple pro-apoptotic BCL2 family members and
mediates resistance to BCL2 inhibition via stabilization of MCL1***. Inhi-
bition of ERK1 or upstream MAPK signalling has been shown to restore
sensitivity to venetoclax in preclinical models, supporting the biological
plausibility of the prediction™. These examples highlight how the model can
recover known relationships and prioritise mechanistically supported but
underexplored candidates for future biomarker development.

In summary, our MarkerPredict biomarker classification algorithm,
accessible on GitHub through the MarkerPredict package and input data
(https://github.com/klari98/MarkerPredict, see Supplementary Text S2,
Table S2 and S5), offers a platform for extensive exploration. Using this tool
here we classified 3670 neighbour-target pairs with a 0.78-0.96 LOOCV
accuracy. We identified 2084 proteins as potential predictive biomarkers to
targeted cancer therapeutics, while 426 pairs had a BPS above 0.5 for all four
calculations. We detailed the biomarker potential of CREB, integrin B1,
Notchl and B-catenin. Our method provides a new rationale—search for
signalling network neighbours of known drug targets—to identify novel
biomarkers. This approach can also be expanded to novel signalling net-
works, unlocking the potential to discover additional relevant biomarkers.
These biomarker predictions are not validated yet, however, after forward
translation such as validation on cell lines, animal models or reverse
translation of looking at patient data, they have a promising prospect to be
used in clinical settings as well. With this work, our goal is to select the most
promising candidates that can go through the validation process, making
biomarker detection more effective. Finding better predictive biomarkers
for targeted cancer therapeutics may contribute to the optimisation of
therapeutic decision-making, thus helps avoiding unnecessary side effects
and improving the prognosis of cancer patients within the realms of per-
sonalised medicine. We invite researchers to utilize our findings in advan-
cing personalised patient care.

Methods
Isolation of signed subnetworks
To conduct an analysis of the network topological properties of IDPs, three
different signalling network datasets were acquired. The Human Cancer
Signaling Network™, SIGNOR™ and ReactomeFI” networks all consist of
curated signalling regulations between proteins. Discrimination between
positive and negative links was necessary for the subsequent motif analysis.
Thus, the signed subnetwork, ie. the part of the network consisting of
positive and negative edges of each network was isolated.

Standard network topological parameters such as the number of nodes
and edges were calculated to compare the three different networks (see
Supplementary Table S1). Network density was calculated for each network

with the common formula®:

2|E|

= VIavi— 1 W

n

where 7 is network density, | V| is the number of vertices i.e. nodes, and |E| is
the number of edges in the graph. The number of triangles were determined
with the FANMOD® programme (see Section 3.2.). Overlapping nodes
among the networks were identified by matching the node names with
UniProtIDs through the UniProt*™ database.

Motif analysis

The FANMOD command-line programme was used to identify three-nodal
directed network motifs. During the analysis, edge colours were used to
distinguish positive and negative edges. Among the identified motifs, fully
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connected three-nodal motifs, also known as triangles, were selected for
further analysis. The analysis also distinguished rare regulatory network
motifs*”’. These motifs were identified as unbalanced triangles containing an
odd number of negative edges, as well as cycles that allowed for a walk
around the motif from at least one direction.

Once the identification of IDPs and oncotherapeutic targets had been
carried out (see Section 3.3), the next step was the calculation of the
enrichment of IDP-target pairs in triangles. Specifically, triangles with at
least one IDP and one target member (irrespectively of the sign of their
interaction) were separated and their IDP target-pairs are referred as IDP
target-pairs” in throughout the paper. These triangles were subjected to
further analysis, considering the directionality and sign of the edges between
the IDP and target. To determine the ratio of regulatory motifs in these
triangles, chi-square tests were employed to assess their statistical sig-
nificance. Finally, the networks and motifs were visualised using the
Cytoscape™ programme. To broaden the prospect of this study, all targets
and their neighbours in motifs were included in the further analyses,
referred as ‘neighbour-target triangles’ later.

Protein annotation and the construction of the final input dataset
Database annotations were utilized to create the final input database for our
machine learning models. Identification of these proteins within the net-
works was conducted through UniProt ID matching. Firstly, the DisProt™
database was used to identify IDPs, which contained validated human IDPs.
The AlphaFold™ structural database and disorder prediction method was
also used, extracting pLLDT (B-factor) values from downloadable .cif files.
The average pLLDT score and the disorder content (defined as the ratio of
regions under the pLLDT score of 50) was calculated. The IUPred™ Python
package was also used to predict disordered regions on the FASTA files
accessed through the UniProt* database. Short, long, and globular scores
were predicted, but globular scores were later excluded due to high similarity
to long scores. Average scores and disorder content values (defined as the
ratio of regions over the score of 50) were calculated. The disorder content
values and scores were then exported as a biological attribute of the proteins
and included in the final input dataset.

The list of oncotherapeutic targets for motif analysis was established
using the My Cancer Genome” database. Target proteins of approved
targeted therapies in oncology and haematology were considered, along
with immunological drugs with existing anticancer clinical trials. In the case
of multikinase inhibitors, each target was individually analysed. A pre-
clinical target list was obtained from the Target Central Resource Database
(TCRD/PHAROS)®, which was filtered to exclude drugs in clinical trials
based on the TCRD and ChEMBL” databases, given the greater clinical
demand and existing literature supporting predictive biomarkers for
approved drugs.

Triangles that included at least one separate approved target member
were identified as neighbour-target triangles (see Section 3.2.). To investigate
the biomarker properties of IDPs in these triangles, we used the
CIViCmine” text-mining database, which discriminates among prognostic,
predisposing, diagnostic, and predictive biomarkers. CIViCmine defined
‘predictive biomarker’ as a protein whose expression level or mutational
status can help predict a sensitivity or response to a certain drug. In cases
where the IDP was a predictive biomarker for the drug targeting the target,
we conducted a manual review of the drugs and targets listed by CIViCmine.
These cases were considered as positive control, i.e. class 1 in the final input
dataset.

The final input dataset was created from the 4550 neighbour-target
pairs identified in total in the three networks. For these pairs, pairwise and
individual biological and network topological data were collected for each
network (see Supplementary Table S3). In the case of biological data,
regarding the IDPs and the targets, the disorder content, oncologic target
status (yes (1) or no (0), see above), and the type of drug considered (small
molecule or antibody) were collected. For topological data, the following
parameters were extracted for all three networks: participation in the net-
works, the number of triangles and regulatory triangles, the direction and

sign of the neighbour-target edges, the properties of the third node in the
triangle, and centrality measures (bridgeness and betweenness centrality).
Centrality measures were calculated with the ModuLand package of
Cytoscape”.

The training set consisted of positive and negative control neighbour-
target pairs. The pairs which where IDPs were established by using the
CIViCmine database as predictive biomarkers for a drug targeting their pair,
were classified as positive control, i.e. class 1 for the training dataset. For
establishing a negative control set, we defined neighbours not present in
CIViCmine as any type (prognostic, diagnostic, predisposing or predictive)
biomarker, which was supplemented with randomly selected triangles for
the smaller DisProt dataset. A completely randomised approach was also
tested but resulted in worse metrics (see Supplementary Fig. S3). The
established list of positive and negative control was used as the training
dataset, while the remaining pairs were classified with the established
machine learning models to predict new potential predictive biomarkers
(see Supplementary Tables S2a and S2b, respectively).

The setup of the machine learning model

To predict new potential predictive biomarkers, three different binary
classification methods were selected. The Support Vector Machine, Ran-
dom Forest and XGBoost were trained by using the Scikit-learn and
XGBoost packages™”’. Random Forest and XGBoost models were used with
the optimal hyperparameters acquired through competitive halving ran-
dom search hyperparameter selection (see Supplementary Text S1), and
with the fixation of the random state. The training dataset consisted of
positive and negative control neighbour-target pairs. Network- and IDP
annotation-specific analyses were also performed using condition-specific
data subsets for these evaluations.

To evaluate the performance, multiple cross-validation methods were
applied. These were cross-validation with 70:30 split of the input data, k-fold
cross-validation and LOOCV. The metrics receiver operation characteristic
area under curve (ROC AUC), precision, recall, their harmonic mean (F1-
score) and accuracy were calculated. Due to its underperformance, we
excluded the SVM model from further analysis, as the decision tree-based
methods outperformed it. LOOCV models were also separately trained on
multiple groups of input factors to determine the predicting power of dif-
ferent groups of biological and topological data. Systematic cross-
classification among networks was also implemented by using the data of
one network as a training dataset with the test classification on another one,
with the aim to see the pan-network applicability of this method.

Final predictions were made on the dataset consisting of neighbour-
target pairs that were not part of the training set. In addition to the ones
trained on the data combined of all networks, network-specific separate
models were trained by only considering the data belonging to the given
network. In the same way, combined and IDP annotation-specific predic-
tions were also conducted for the three IDP-databases and prediction
methods. The predicted class and the probability of each class were deter-
mined. The most important features in both models were identified with the
XGBoost feature importance and the SHAP”' Python package. The latter
uses the Shapley values of game theory to address feature importance. For
the SHAP analysis, the booster type was changed to gbtree, to accommodate
to the requirements of the package.

To provide the availability of our method for further research, the
MarkerPredict Python package containing the data and the code for the
machine learning predictions were made available through GitHub with the
appropriate documentation, using the poetry package” (https:/github.com/
Klari98/MarkerPredict). To perform network topology-based biomarker
prediction on completely new networks, it is necessary to prepare the
relevant biological and topological data according to the methods
described above.

The Biomarker Probability Score (BPS)
Here we define the BPS as a ranking-based machine learning probability
score to assess the biomarker potential of neighbour-target pairs. It was

npj Systems Biology and Applications| (2025)11:132


https://github.com/klari98/MarkerPredict
https://github.com/klari98/MarkerPredict
www.nature.com/npjsba

https://doi.org/10.1038/s41540-025-00603-0

Article

calculated by using the acquired probabilities of label 1 (the given pair is
classified as a potential predictive biomarker) from the final prediction.
Using the Random Forest and XGBoost methods on the combined and the
three network-specific data, altogether 32 separate predictions were made
after training the models on the final input dataset. For the combined and
each IDP-annotation-specific predictions, 4 separate BPS scores were cal-
culated. The probability values were arranged in a descending order and
were given ranks. In the case of identical probability values, the average of
the subsequent ranks was given to all the repetitions. The BPS of each
neighbour-target pair was defined as the normalised average of the rank of

the predictions:
(ZLIRP-")
BP. =1—-——
Sp) -

-1

@

where R is the rank of the probability of class 1 for the neighbour-target pair
in the given prediction, 7, 7 is the total number of predictions (8), and m is the
number of the neighbour-target pairs where predictions were made. While
BPS of 1 means the highest biomarker probability with all 8 predictions, BPS
of 0 means lowest biomarker probabilities in all cases. BPS correlates well
with the original training label (see Fig. le), thus was suitable for measuring
the strength of future predictions.

Data availability
Data and codes for the learning prediction are available at this GitHub page:
https://github.com/klari98/MarkerPredict.
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