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Autophagy is a complex cellular process having multiple roles, depending on tissue, physiological, or pathological
conditions. Major post-translational regulators of autophagy are well known, however, they have not yet been collected
comprehensively. The precise and context-dependent regulation of autophagy necessitates additional regulators,
including transcriptional and post-transcriptional components that are listed in various datasets. Prompted by the lack
of systems-level autophagy-related information, we manually collected the literature and integrated external resources
to gain a high coverage autophagy database. We developed an online resource, Autophagy Regulatory Network (ARN;
http://autophagy-regulation.org), to provide an integrated and systems-level database for autophagy research. ARN
contains manually curated, imported, and predicted interactions of autophagy components (1,485 proteins with 4,013
interactions) in humans. We listed 413 transcription factors and 386 miRNAs that could regulate autophagy
components or their protein regulators. We also connected the above-mentioned autophagy components and
regulators with signaling pathways from the SignaLink 2 resource. The user-friendly website of ARN allows researchers
without computational background to search, browse, and download the database. The database can be downloaded
in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. ARN has the potential to facilitate the
experimental validation of novel autophagy components and regulators. In addition, ARN helps the investigation of
transcription factors, miRNAs and signaling pathways implicated in the control of the autophagic pathway. The list of
such known and predicted regulators could be important in pharmacological attempts against cancer and
neurodegenerative diseases.

Introduction

Since the discovery of autophagy in the 1960s, and the dis-
covery of autophagy-related genes in yeast in the 1990s, our
knowledge of the regulation of autophagy expanded signifi-
cantly. Major post-translational regulators of the autophagic
machinery are well known, compared to the transcriptional and
post-transcriptional regulators, where only limited information
is available currently.1,2 Autophagy is essential in homeostasis

and stress-response as well as in macromolecular turnover and
development.3 Both its insufficient and overdriven functions
can hinder cell survival.4 Thus, the regulation of autophagy is
critical, with high medical importance. The autophagic machin-
ery, consisting of a complex interplay between more than 30
initiator and executor proteins, must be under constraints of
precise, context-dependent and systems-level regulatory mecha-
nisms at post-translational, transcriptional, and post-transcrip-
tional levels.
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The proteins involved in the process of autophagy are orga-
nized into interacting complexes, having different functions in
the autophagic process (e.g., initiation, membrane sequestration,
and in targeting the materials to degrade in the forming phago-
phore). Most of the interactions within the core machinery of
autophagy are well known, however, there are some unanswered
questions that are needed to be resolved in order to better under-
stand the mechanism.5 Interestingly, direct connections between
the initiation and execution complexes were only found in the
past year: it has been proved that ULK1/2, the major initiator
could activate autophagy by phosphorylating another key auto-
phagic protein, BECN1/Beclin 1.6 A similar important finding
was obtained from yeast, where Atg1 (yeast ortholog of ULK1/2)
phosphorylates Atg9 and Atg2, enhancing the membrane traf-
ficking to the phagophore assembly site.7 These recent and key
findings indicate that post-translational regulation of autophagy
could still provide unexpected and undiscovered connection with
high evolutionary or biomedical relevance. To facilitate such dis-
coveries in silico, structure-based predictions could guide experi-
mental researchers to validate and identify such connections.

There is no doubt that post-translational regulation of
autophagy is only one part of the story. Autophagic activity also
depends on the expression of autophagy-related genes and is reg-
ulated by certain transcription factors (TFs) and microRNAs
(miRNAs).1,2 These regulatory influences can be realized on dif-
ferent time scales, be driven by external signals, and constitute
feedback loops. Considering the transcriptional regulation of
autophagy, some elements have already been highlighted in the
literature, such as the transcription factors TFEB, FOXO, and
SREBFs/SREBPs.8-10 By modulating autophagy, these TFs take
part in the cellular response to starvation, stress, or lipid deple-
tion, and are also involved in the pathomechanism of several dis-
eases.1,11 TFEB is activated upon starvation, and facilitates the
transcription of many autophagy and lysosome related genes and
maintains the regeneration of lysosomes.1 FOXO1 and FOXO3
act as effectors of the insulin signaling pathway, to regulate auto-
phagic activity.1,11 Analogously, SREBF2/SREBP2 activates
autophagy in case of sterol depletion.10 Beyond the role of the
few TFs extensively examined and highlighted in the literature,
further transcriptional regulatory components are expected to
regulate autophagy in certain context. Given the advances of
novel high-throughput techniques in protein-DNA interaction
discovery, such as ChIP-Seq, PBA, and SELEX,12–14 numerous
candidate TFs have been discovered. In addition, with resources
containing TF binding site information, like JASPAR,15 poten-
tial target genes for a given TF can be predicted on a genome-
wide scale. One may think that the current limitation in the
search for autophagy regulators is the available data and compu-
tational expertise to evaluate and analyze data sets.

Several miRNAs downregulate mRNAs of autophagy-related
genes by specific binding. However, little is known about their
systems-level role. A recent review listed more than 16 miRNAs
regulating autophagy genes post-transcriptionally.2 These miR-
NAs are able to block specific steps of autophagy (e.g.,,
MIR376B acts on ATG4 and BECN1, while MIR630 acts on
ATG12 and UVRAG). Remarkably, most of these miRNAs affect

the early stage of autophagic vacuole formation, possibly because
this way miRNAs could prevent the accumulation of autophago-
somes.2 The growing number of experimental data on miRNA-
driven regulation necessitates repositories for the post-transcrip-
tional regulation of autophagy. Such resources could facilitate
our understanding on the context-dependent role of these
regulators.

The importance of identifying such context-dependent regula-
tors is also supported by the fact that autophagy is a promising
therapeutic target in several pathologies, especially in cancer and
neurodegenerative diseases.16 Because autophagy has an ambigu-
ous role in cancer, described by the ‘double-edged sword’ meta-
phor, therapies targeting the process need to be specific and
context-dependent.17 Considering the complexity of autophagy
and its regulation, searching for therapeutic targets without a sys-
tems-level analysis is like looking for needle in a haystack. The
first step on the way to investigate the regulation of autophagy as
a system is to collect all the available knowledge, including all lev-
els of regulation. Currently elements of this knowledge are scat-
tered in huge number of articles and bioinformatics resources,
like databases of protein-protein interactions, transcriptional reg-
ulation, or post-transcriptional regulation.18 An integrated and
precisely compiled interaction network could allow mapping
feedback loops at all levels of regulation; to investigate differences
by tissue, physiological or pathological state, drug effect, or gen-
der; to build models using different mathematical formalisms,
and thus simulate different conditions, and verify the models
experimentally.

Until now few systems-level resources about autophagy have
been published. The Human Autophagy Database19 (HADb) is
a collection of 234 autophagy-related genes, containing referen-
ces to major genome and protein databases.19 It does not intend
to provide an interaction network, so it completely lacks interac-
tion data. Another database named Autophagy Database20

(ADB) contains orthologs from 40 species, and gives a compara-
tive list of them, including a total of 206 proteins in human. For
some proteins, it also collects a list of interactions—641 interac-
tions in human—but the sources of those data and the scope of
the collection is not clearly defined. A large-scale LC-MS (liquid
chromatography and mass spectrometry) study provided a net-
work of 751 interactions between 409 autophagy-related pro-
teins.21 The advantage of this dataset is the uniform
methodology and the relatively wide range of proteins involved
in the study. However, this resource contains only the
interactions detectable by the LC-MS method, and omits other
interactions described in the literature. The 2 mentioned autoph-
agy-focused resources lack data on transcriptional and post-
transcriptional regulation.

Prompted by the lack of a proper bioinformatics database that
extensively collects available data from the literature, from pro-
tein-protein interaction databases, and prediction methods, and
contains data on several levels of regulation, we developed
Autophagy Regulatory Network (ARN; http://autophagy-regula-
tion.org), a novel resource to help both in silico and wet lab
researchers in their investigation of the human autophagic
process.
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Results

The Autophagy Regulatory
Network (ARN) database

The ARN database (http://autoph-
agy-regulation.org) contains proteins
involved in the mechanisms of autoph-
agy, their regulators, and their TF and
miRNA regulators as well as connec-
tions between all these components and
signaling pathways (Fig. 1). Six main
layers build up the structure of ARN:
(1) autophagy proteins, (2) their direct
regulators from autophagy specific
resources, (3) post-translational regula-
tors that directly regulate proteins in the
first 2 layers, (4) transcriptional regula-
tors of the first 3 layers, (5) post-tran-
scriptional regulators of the first 4
layers, (6) signaling pathways and pro-
tein-protein interactions connecting
pathways to autophagy regulators. ARN
contains interactions from manual cura-
tion, 19 external databases, and 4 pre-
diction methods (listed in Table 1). For
basic statistics, please see Figure 2. Users
are able to filter interactions by sources,
and use resources in a comparative way,
according to their requirements. Interac-
tions may have confidence scores, users
can filter by the data set, setting prefera-
ble level of confidence, using the cus-
tomizable download module.

The ARN website
ARN’s website is available at http://autophagy-regulation.org.

The website is designed to give a comfortable way to browse
interactions, providing hyperlinks to original sources and
PubMed references of each interaction. The download section of
the website gives an opportunity to customize the data to down-
load: select between layers, and filter interactions by source, or by
confidence score.

The search field on the main page autocompletes the search
term, and understands several different database IDs and acces-
sion numbers. If the search is successful, the page navigates to the
datasheet of the selected protein. The protein datasheet shown in
Figure 3 illustrating the interactions of a key autophagy protein,
BECN1, contains 4 main sections. At the top of the page, in a
box the full name, gene name, UniProt ID and Ensembl ID of
the protein are available. Below the names, a list of related dis-
eases and cancer types can be found. On the left side, a list of
interactions enumerates all the first neighbors of the protein,
grouped by layers. The lists of the layers are expandable, and
within these lists, detailed information (e.g., sources, references,
confidence scores) can be obtained about an individual interac-
tion. Below the list of the interactions, the connections between

signaling pathways and the autophagy system are listed. We
defined this pathway connection either in one or 2 steps, where
one of the proteins is a member of a given pathway, and the other
one is a present in the ARN database. On the right side of the
protein datasheet, an interactive view of the first neighbors’ net-
work is presented. In this view, interactors can be filtered by
layers of ARN, and users are able to get more information on
proteins and interactions by clicking on them (Fig. 3).

Comparison with other resources
Compared with general protein-protein interaction (PPI)

databases, BioGRID44 contains 76 interactions between 30
autophagy proteins, while in IntAct46 136 interactions between
34 autophagy proteins can be found. ADB20 contains 114 inter-
actions between 31 autophagy proteins. ARN as an integrated
resource contains 238 interactions between 38 autophagy pro-
teins. Note that nearly all of the PPIs in ARN are present in other
sources but it is ARN that contains them together in a single
resource. Thanks to our manual curation we could increase the
number of well-referenced interactions with 18, which are not
present in the other sources.

Figure 1. Connections between autophagy components and signaling proteins in one, 2 or 3 steps.
One-step connections are direct protein-protein interactions (PPIs), or a pathway member TF regu-
lates the transcription of an autophagy protein. Two-step connections also can include PPIs and TF-
gene interactions, but TF-miRNA-mRNA interactions as well. Three-step interactions are combinations
of all these types of interactions, involving 4 molecular species. In this representation, signal is coming
from the signaling pathway receptors binding ligands, toward the proteins executing autophagy. By
analyzing the whole network, feedback circuits and network motifs can be identified along the paths.
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Similar comparison with transcriptional and post-transcrip-
tional resources is shown in Table 2. Note that many of these
connections might be false positives or highly context specific.

However, similarly to PPI predictions, these potential connec-
tions could also serve as a pool of possible autophagy-related reg-
ulatory mechanisms that should be examined and confirmed
experimentally. The ARN resource contains 98 known and pre-
dicted TFs for 37 autophagy genes with 557 TF-gene connec-
tions; 35 of them are manually curated, and cannot be found in
other resources. Of note, we found only a few TFs present in
multiple bioinformatics resources, indicating the importance of
different approaches to discover TFs capable to regulate autoph-
agy, and the usefulness of ARN as an integrated single resource.

We extracted the interactions relevant in the regulation of
autophagy from all constituting databases, while we have inte-
grated different types of molecular interactions (protein-protein,
TF-gene, miRNA-mRNA) into a uniform data scheme. Overall,
ARN contains more regulatory interactions for the autophagy
proteins than any of the constituting databases. Interactions from
23 sources have been integrated into one comprehensive data-
base, giving the opportunity for comparison and selection
between the data sources. Note that the total numbers in each
ARN layer at Table 2 are higher than any of the sources. This
indicates the increased amount of data in ARN, compared to
other resources.

Application

ARN can be used to examine the autophagy system in humans
for both a global analysis or for gene-specific studies. For both
cases, different levels of the regulation can be examined, validated
or experiments can be evaluated. Here, we highlight another key
feature of ARN that is its immersive connection with signaling
pathways: ARN connects autophagy proteins directly and indi-
rectly with 7 major signaling pathways taken from SignaLink 2.
We included all connections up to 3 steps (4 elements) length,
considering PPIs, TF-gene, and miRNA-mRNA interactions as
well. There are 357 direct connections between pathway member
proteins and autophagy proteins, indicating the robust and con-
text specific regulation of autophagy by signaling pathways. On
the Figure 4 one- and 2-step long connections between pathways

and autophagy components are shown.
This is a global map that could be specifi-
cally analyzed or zoomed in by users who
download ARN.

In the following, we illustrate the
power of multilayered connection
between autophagy and signaling path-
ways with the example of the nuclear hor-
mone receptor (NHR) pathway. Most of
the transcription factors regulating
autophagy proteins belong to the NHR
pathway. Using ARN data, we found
potential androgen or estrogen receptor
binding sites in the promoters of 2-thirds
of the autophagy proteins (32). Though
gender differences at the level of autoph-
agy are observed in many diseases, little is

Table 1. The data sources of the Autophagy Regulatory Network

Type of interactions Data sources

Protein-protein interactions ADB20

ARN manual curation
Behrends et al.21

BioGRID44

HPRD47

InnateDB45

IntAct46

ELM based prediction38

Prediction based on domain-
domain interaction

Signalink 2.0 manual curation55

Transcriptional regulation ABS40

ARN manual curation
ENCODE distal41

ENCODE proximal filtered41

HTRI29

JASPAR15

ORegAnno42

PAZAR43

miRNA-mRNA interactions miR2Disease48

miRDeathDB49

miRecords50

miRTarBase51

TarBase52

Transcriptional regulation
of miRNAs

ENCODE41

PuTmiR 1.153

PuTmiR 2.053

TransmiR 1.254

ARN contains data from manual curation and from 23 external resources.
From SignaLink we included 3,287 manually curated interactions; we used 4
prediction methods in ARN (domain-domain based prediction (using data
from Pfam,39 DOMINE60 and Negatome,61) domain-motif based prediction
using the structure filter for ELM,38 TF-promoter binding prediction using
the JASPAR15 algorithm, and TF-miRNA gene regulation from PuTmiR53); the
remaining 18 databases, including all the miRNA-mRNA data sets, contains
data mainly from high-throughput experiments.

Figure 2. Basic statistics of ARN. Number of components (A) and interactions (B) in different layers of
ARN is shown. The numbers of experimentally verified interactions are indicated in parenthesis next
to the total number of interactions, which also includes predicted ones.
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known about the mechanisms underlying this phenomenon.22

For example, in cardiomyocytes and neurons, following ischemia
and reperfusion, autophagy mediates in part the cytoprotective
effect of estrogen,23-25 resulting in a higher level of apoptosis in
males.26,27 Also in neurodegenerative diseases, gender differences
in autophagy have been described.28 In addition, almost all neu-
rodegenerative diseases have higher incidence in females.22 At
certain prostate cancer cell types, androgen signaling plays a

cardinal role in the choice between autophagy and apoptosis, for-
mer helping survival and metastasis formation, while latter delay-
ing tumor growth.4 ARN could help to find the connection
between sex steroid signaling and autophagy. In Figure 5, the
transcriptional regulation of autophagy proteins by the androgen
and estrogen receptors is presented. Regulation of ULK1/2 and
UVRAG by ESR1 is experimentally verified,29 according to the
HTRI database. All the other connections were predicted in
ARN using the JASPAR algorithm.15 Another autophagy pro-
tein, WIPI1 can also be transcriptionally regulated by sex steroid
receptors. In addition, WIPI1 contains an LXXLL motif, which
enables it to bind to ESR1, ESR2, and AR in a hormone inde-
pendent way.30 This connection is important, because localiza-
tion of WIPI1 depends on autophagic activity, and at the same
time it regulates sex steroid signaling, affecting the transcription
of several autophagy proteins, including WIPI1 itself. As it is
shown in Figure 5, 84% of the core autophagy proteins are tran-
scriptionally regulated by sex steroid receptors. ESR1, ESR2, and
AR regulate different but overlapping sets of autophagy proteins
(23, 12, and 12 proteins, respectively). AR is also able to hetero-
dimerize and activate ESR1, as well as ESR1 and ESR2 each
other. Further research studies might reveal the role of these
mechanisms in a gender-specific regulation of the autophagic
activity.

Discussion

Here we present a novel resource on the regulation of autoph-
agy in human. Autophagy Regulatory Network (ARN; http://
autophagy-regulation.org) is a comprehensive interaction data-
base featuring a manually curated core dataset, integrated and
predicted data from numerous sources, and direct connection to
literature curated interactions of 7 major signaling pathways.
Directions, signs, confidence scores, and references are available
for each interaction. ARN is accessible through a user-friendly
webpage, and the data can be downloaded in all major bioinfor-
matics standard formats, including simple text/table files and
visualized Cytoscape networks.

To achieve a better understanding of context-dependent regu-
lation of autophagic activity, a systems-level analysis of regulatory
mechanisms is necessary. External stimuli processed by the sig-
naling network can modulate autophagy at post-translational,
transcriptional, and post-transcriptional level. Applying this
approach in research studies can lead to the identification of key
regulatory circuits, which are responsible for specificities in the
regulation of autophagy, in different tissues, and under patho-
logic or therapeutic conditions. We created ARN with the aim to
support the systems-level analysis of context-dependent regula-
tion of autophagy, and also to facilitate the large-scale examina-
tion of a single autophagy-related protein.

Primary data on post-translational, transcriptional, and post-
transcriptional regulation of autophagy proteins can be obtained
from various resources. However, to use data from multiple
resources in one analysis can be tedious because of the different
data formats and molecular database IDs. Furthermore, many

Table 2. Basic statistics of the Autophagy Regulatory Network

Data sources and layers Identical nodes Identical edges

Core autophagy proteins 38 238
ADB20 31 114
ARN manual curation 20 26
Behrends et al.21 26 38
BioGRID44 30 76
ELM-based prediction38 16 64
HPRD47 11 11
InnateDB45 28 40
IntAct46 34 136

Post-translational regulators 13,803 197,167
ADB 206 381
ARN manual curation 47 46
Behrends et al. 398 441
BioGRID 12,051 71,496
Domain-domain based prediction 166 1,138
ELM-based prediction 937 78,824
HPRD 7,290 29,617
InnateDB 2,816 6,125
IntAct 9,862 45,745

Transcriptional regulators 13,340 170,245
ABS40 23 14
ARN manual curation 31 35
ENCODE41 2,209 9,217
HTRI29 12,209 39,477
JASPAR15 12,813 119,873
ORegAnno42 908 932
PAZAR43 1,940 3,018

Post-transcriptional regulators 7,633 20,186
miR2Disease48 171 124
miRDeathDB49 126 108
miRecords50 664 760
miRTarBase51 7,203 19,177
TarBase52 1,798 2,584

Transcriptional regulation of miRNAs 646 6,911
ENCODE 195 590
PuTmiR 1.153 413 3,034
PuTmiR 2.0 288 3,095
TransmiR54 291 542

Signaling pathways and interactions 1,199 3,287
SignaLink 2 manual curation55 1,199 3,287
BioGRID 535 697
HPRD 481 611
InnateDB 9 51
IntAct 12 69

Data sources of each layer are listed with the corresponding number of
nodes (i.e., proteins or miRNAs) and edges (i.e., protein-protein interactions,
TF-gene, miRNA-mRNA, or TF-miRNA regulatory connections). The number
of identical nodes shows both connecting component pairs (i.e., TFs and tar-
get genes as well). For each major layer we highlighted the total number of
nodes and edges in ARN that is generally less than the sum of the compo-
nents due to the overlap among the resources. Note that the highlighted
numbers in each layer are higher than those in any of the sources.
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resources often contain erroneous interactions between proteins,
derived from high-throughput methods or predictions. To
address this problem, ARN involves manually curated interac-
tions between autophagy proteins, their post-translational

regulators, and between signaling components. Most of the inter-
actions in ARN have confidence values allowing the user to set
an own cut-off value (or use the default value calculated by ROC
analysis, using manually curated interactions as gold standard

Figure 3. Screenshots from the protein datasheet of BECN1 from the ARN webpage. (A) At the top of the datasheet the name, gene name, UniProt ID,
and Ensembl protein ID of the selected protein is shown, with hyperlinks to the UniProt and Ensembl webpages. Below this box, the potential signaling
properties and disease related information with a special highlight on cancer types is listed. (B) The interactions of the selected protein are listed,
grouped by layers. In addition, at the bottom of the list, the pathway connections can be browsed by pathways. (C) Information on sources, references
and confidence scores of each interaction can be obtained by clicking on the green triangles. (D) On the right side of the datasheet, an interactive net-
work image of the first neighbors of the selected proteins is available. Note that unlike ULK1, ULK2 is not present in the BECN1 network as ARN contains
only those interactions that were specifically identified between exact proteins, and no publications were curated that experimentally verified the likely
connection between ULK2 and BECN1.
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set). For all protein-protein interactions
we offer the Gene Ontology semantic
similarity score.31 This score is based on
the assumption, that proteins involved
in similar biological processes are more
likely to interact in vivo. This way we
can decrease the ratio of erroneous inter-
actions from high-throughput screen-
ings or predictions.

Before ARN, 2 autophagy-focused
resources have been published. The
Human Autophagy Database19 (HADb)
contains only sequence data of genes
from an autophagy-dedicated microar-
ray. Autophagy Database20 (ADB) pro-
vides orthology data from 41 species,
and for some proteins also a list of inter-
actions. However, the source of these
interactions and the scope of the cura-
tion are not clearly defined. Indeed, the
main aim of ADB is to serve a compre-
hensive collection of orthologs of
autophagy-related genes. The interac-
tion data are not available for download
in a single file, but can be browsed only
on the webpage. Compared to HADb
and ADB, in ARN the data sources are
well defined, and the size of the net-
work is determined by the principles of
its design. ARN provides data not only
on post-translational regulators, but
also on transcriptional and post-
transcriptional regulators. In addition,
beside the direct regulators of the pro-
teins involved in autophagy initiation
and execution, ARN makes a connec-
tion between the cellular signaling net-
work and the regulation of autophagy.
The directions, signs, and confidence
scores of the interactions are supplied
in format ready for computational
processing.

ARN serves as a good basis for various kinds of bioinformatics
approaches, while it also effectively supports wet lab research
work. Using the ARN website, researchers are able to search for
potential interactors or regulators affecting their subject of inter-
est. ARN database contains many potential regulators of the
entire autophagic process and even for a single component that
allows researchers to combine expression or mutation data sets
and analyze autophagy in context-specific states. For example,
ARN data can be used to point out important alterations in
autophagy regulation upon a disease.17 Therefore, ARN can sup-
port experiment design and evaluation for both basic and transla-
tional research works.

Furthermore, network data of ARN can be analyzed with
graph topological methods, modularization methods,

perturbation simulations, and models can be built using different
mathematical formalisms. Having an appropriate, good quality a
priori knowledge as a starting point is a crucial requirement of
successful modeling.32 ARN aims to support modeling
approaches by serving as a good basis for a variety of methods,
such as Boolean and rule-based modeling.33,34 Combining with
gene expression or mutation data, comparative analyses can be
carried out to investigate differences in autophagy regulation by
tissue, physiological or pathological conditions, gender, and
many other aspects. With the inclusion of drug compound and
target interaction data, ARN is suitable to support network-based
pharmacological attempts, such as multi-target and allo-network
drug design.35

Knowing that the list of components and interactions in each
layer is not complete, we will include further experimentally

Figure 4. The network of 7 signaling pathways with direct autophagy regulators and core autophagy
proteins. The numbers represent the total number of components in each section but for clarity, only
components with the highest confidence, one- or 2- step long connections are shown on this figure.
We also omitted the connections through transcription factors or miRNAs. Edges between autophagy
proteins are blue. Intermediate components (i.e., direct autophagy regulators) in the 2-step connec-
tions and their edges are colored with black. Pathways are color-coded, multipathway proteins and
edges between different pathways have the colors of the involved pathways mixed. Edges directly
connecting pathways and autophagy proteins have the color of the source pathway.

www.tandfonline.com 161Autophagy



validated data every year. We also intend to include tissue-specific
localization information to future versions of ARN. In addition,
we will work on the extension of ARN for other species, for
example, yeast, Drosophila, and zebrafish. In the form of the feed-
back option of the ARN website, we are looking for comments
and suggestions from autophagy researchers on how we can
improve ARN.

In conclusion, the Autophagy Regulatory Network reported
here is a novel, extensive bioinformatics resource focusing on
the regulation of autophagy. It opens up new opportunities in
autophagy research, both for experimental and in silico research
work, as well as for small-scale and systems-level studies. On
the ARN website (http://autophagy-regulation.org), possible
post-translational, transcriptional, and post-transcriptional regu-
lators of autophagy related proteins can be examined easily. Key
disease and cancer-related information are also listed to high-
light the medical relevance of the proteins. ARN database can
be downloaded in a user specific content and format allowing a
customizable and efficient way to assist the community. ARN is
a gap-filling integrative resource, and we hope that it will enable
the autophagy research community to analyze more easily the
already available data, guide future research projects, and facili-
tate autophagy-related conceptualizations of biomedical
processes.

Methods

Compilation of the Autophagy
Regulatory Network

We developed an onion-like, multi-
layered database structure to integrate
and utilize the different regulatory layers
of the Autophagy Regulatory Network.
The core of the network contains
autophagy executor proteins based on
reviews. Within the core module, inter-
actions between the proteins are from
manual curation of the literature. First,
we systematically checked every autoph-
agy related protein-protein interactions
mentioned in the review articles. Next,
we searched for the original research
articles experimentally verifying the
interactions. We also used iHop36 and
Chilibot37 web services to supplement
the review-based information and cite
experimental evidence. For each manu-
ally curated interaction, we listed the fol-
lowing information on the interaction:
1) PubMed ID of the primary first-time
verifying article; 2) direction; 3) effect
type (stimulatory/inhibitory); 4) molec-
ular mechanism (if available). We
searched for interactions among autoph-
agy core proteins and between autoph-
agy core proteins and their regulating
proteins. We collected exclusively and

very strictly interactions between 2 human proteins; interspecies,
or even uncertain human-protein interactions, were omitted.

We considered interactions as direct if chemical reaction
or physical binding occur between the 2 molecules (e.g., a
protein phosphorylates another). Interactions presumably
without such chemical or physical mechanism are denoted as
indirect (e.g., interaction between a transcription factor and
the protein, whose gene is targeted by the transcription fac-
tor, or in case of 2 members of a complex without direct
binding to each other). Similarly, all miRNA interactions are
indirect, because the miRNA does not regulate directly the
protein’s concentration or activity, but only its translation
process. ARN is a network database, where nodes represent
primarily proteins, not genes or mRNAs. That is why in the
ARN database interactions taking effect with interposition of
more molecules, are indirect.

In the first layer, the direct protein regulators of the core
autophagy machinery are collected. The first layer is from 3 sour-
ces: (a) from manual curation of the literature, (b) data acquired
from the Autophagy Database20 (ADB), and (c) from a proteo-
mic analysis of the autophagy network.21 In the second layer,
potential protein regulators are listed that have not yet been
found to regulate the core autophagy proteins or their known
regulators but in silico methods predicted their enzymatic

Figure 5. Interactions between the 2 estrogen receptors (ESR1 and ESR2), the androgen receptor
(AR), and 32 autophagy proteins. Dashed line represents transcriptional regulation, while continuous
line is for post-translational regulation. The width of the lines shows the number of data sources
where the interaction can be found. The size of a node is proportional with the number of its connec-
tions. WIPI1 is able to bind to the estrogen receptors. AR and ESR2 are able to heterodimerize with
ESR1. The interactions between the autophagy proteins are shown with a continuous line.
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reaction or protein binding to them. For this purpose, we used
the ELM server38 and searched for enzymes (i.e., phosphatases,
ubiquitin-ligases, peptidases, etc.) that can directly or indirectly
modify autophagy components. We also used protein domain
information from PFAM39 to predict a protein-protein interac-
tion (PPI) based on domain-domain interactions.

The next 3 layers contain information on the transcriptional
and post-transcriptional regulators of the above described inner-
layers (i.e., autophagy components, their known and predicted
protein regulators). The transcriptional regulatory layer contains
transcription factors that are known or predicted to transcrip-
tionally regulate the inner layers. These regulatory connections
were integrated from databases such as ABS,40 ENCODE,41

HTRIdb,29 ORegAnno42 and PAZAR,43 or predicted with JAS-
PAR.15 We also performed manual curation to collect TFs
directly regulating autophagy proteins. In addition, to add the
known complexity of transcriptional regulation, this layer also
contains PPIs between the TFs from BioGRID,44 InnateDB,45

IntAct46 and HPRD47 databases. In the next layer, we inte-
grated miRNAs as post-transcriptional regulators of the inner-
layers (autophagy components and their direct regulators,
including enzymes and TFs) from experimentally verified
miRNA-mRNA interaction databases: miR2Disease,48 miR-
DeathDB,49 miRecords,50 miRTarBase,51 and Tarbase.52 The
third regulatory layer contains the transcriptional regulators
of these miRNAs (i.e., TFs known to regulate the expression of
the miRNAs known to downregulate autophagy component or
regulators). We used ENCODE,41 PuTmiR53 1.1 and 2.0 ver-
sions and TransmiR v1.254 to integrate this information. Data
from the integrated resources were downloaded in the spring of
2013.

In the last step of the compilation, we connected signaling
pathways from SignaLink 2 (http://signalink.org),55 a resource
we recently developed, containing manually curated data of
signaling pathways. SignaLink 2 contains 7 major signaling
pathways: RTK (receptor tyrosine kinase), TGFB/TGF-b
(transforming growth factor b), WNT, Hedgehog, JAK-
STAT, NOTCH and NHR. Connections between signaling
pathways and autophagy were derived in 3 different ways: (a)
predicted or experimentally verified direct PPIs between a sig-
naling protein and an autophagy protein; (b) via the transcrip-
tional regulation of a signaling pathway related TFs and its
autophagy-related target; and (c) through post-transcriptional
regulation, where a signaling pathway affects a TF of a
miRNA, which regulates a protein involved in autophagy or
its regulation. Note that we also added further protein-protein
interactions from BioGRID,44 InnateDB,45 IntAct,46

HPRD,47 and predictions between all the already included
protein components.

For every integrated data source containing interactions col-
lected with different methods, quality control is highly impor-
tant. From each source databases we included the available
confidence scores, maintaining the possibility for the users to
exclude low confidence interactions from their analysis. However,
these scores are only available for the subset of interactions
derived from the specific source. To obtain a general confidence

score for all protein-protein interactions, we calculated semantic
similarity score31 between the Gene Ontology Biological Pro-
cess56 properties of the interacting pairs of proteins. In case of
PPIs inferred from domain-domain based prediction, we per-
formed a ROC analysis to minimize the false positive rate. With
the domain-motif based prediction, we used the cut-off value
suggested by the authors of the ELM Structure Filter38

algorithm.
For each protein in ARN we included disease and cancer type

annotations. We obtained diseases from GAD (The Genetic
Associations Database),57 and OMIM (Online Mendelian Inher-
itance in Man),58 and cancer-type mutation patterns from COS-
MIC (Catalog of Somatic Mutations in Cancer).59

Database implementation and structure
Data storage is based on MySQL, which serves data to the

webpage by a PHP interface. The webpage uses jQuery on the
client side to offer a high interactivity. Information can be
loaded asynchronously by small http requests, giving an efficient
and comfortable browsing experience through hundreds of
interactions. We wrote a separate data export module in Python
language that offers various choices to download data in CSV,
BioPAX, PSI-MI TAB, PSI-MI XML, SBML, and Cytoscape’s
CYS format. Several options are available to customize the net-
work to download: users are able to filter by interaction types
(e.g., PPIs, transcriptional regulation), as well as by sources.
There is also an option to separate experimentally verified and
predicted interactions. The customized network files are gener-
ated according to the selected options by the export module
running in the background. This process can take few minutes.
Then, for each download, we generate a URL, where users can
access the data for 14 days Optionally, users can provide their e-
mail addresses to which files smaller than 10 MB will be
emailed. The whole dataset is also available as a standard SQL
dump, so any complex query or modification can be applied
using SQL statements.

The core of the ARN database is the interaction table. In the
interaction table source and target fields are integers pointing to
the primary keys of protein or "mirna" tables. The layer field
denotes the type of the interaction, and its value determines if
the source or the target refers to a protein or miRNA. The mean-
ings of the values in the layer field are the followings: 0: interac-
tions between autophagy executor proteins; 1: PPIs between
autophagy proteins and their direct regulators from our manual
curation, ADB20 and the ChIP-Seq study of Behrends et al.;21 2:
direct and indirect regulators of autophagy proteins from general
PPI resources44-47 and from predictions based on domain-
domain39 and domain-motif38 interactions; 3: value not used
due to technical reasons; 4: TF-target connections; 5: miRNA-
mRNA connections, 6: PPIs in the signaling pathways, imported
from SignaLink 2;55 7: TF-miRNA connections; 8: PPIs between
TFs, signaling pathways and autophagy regulators, from the same
sources as layer 2. Each interaction has 3 main attributes: is_dir-
ected (0: undirected; 1: directed; 2: direction is predicted), is_dir-
ect (0: indirect; 1: direct) and is_stimulation (0: unknown; 1:
stimulation, -1: inhibition). In addition, interactions have one or
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more sources. Sources are listed in the source table, and the
interaction_source table contains their assignment to the
interaction table. Manually curated interactions have litera-
ture references, contained by the interaction_reference table.
In the interaction_reference table, articles are identified by
their Pubmed IDs. Most of the interactions have confidence
scores. These are stored as float values in the interaction_-
weight table, the different types of scores are listed in weight
table. Components of ARN are listed in the protein and
"mirna" tables. The protein table contains the uniprot_name
field, which is unique, and it contains the UniProt accession
number of proteins. All records imported from other data-
bases, as well protein names from articles are mapped to their
primary UniProtKB ID. Proteins may have signaling topolog-
ical properties and pathway assignments, available in pro-
tein_topology and protein_pathway tables. In the "mirna"
table we used miRBase AC and miRNA name to identify
miRNAs.
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