
A Useful Links

Note that URL addresses were checked as of January 2009.

Groups Working on Networks and Complex Systems

Adam P. Arkin http://genomics.lbl.gov/

László A. Barabási http://www.barabasilab.com/

Yaneer Bar-Yam http://necsi.org/publications/dcs/

Eric L. Berlow http://www.ericlberlow.net/

György Buzsáki http://osiris.rutgers.edu/frontmid/indexmid.html

Gerald M. Edelman http://www.scripps.edu/nb/chair.html

Jennifer H. Fewell http://sfi.cyberbee.net/jennifer.html

Murray Gell-Mann http://www.santafe.edu/∼mgm/
John Gerhart http://mcb.berkeley.edu/faculty/CDB/gerhartj.html

Mark Granovetter http://www.stanford.edu/dept/soc/

people/mgranovetter/index.html

Stuart A. Kauffman http://en.wikipedia.org/wiki/Stuart Kauffman

János Kertész http://www.phy.bme.hu/∼kertesz/
Marc W. Kirschner http://sysbio.med.harvard.edu/faculty/kirschner/

Susan Lindquist http://www.wi.mit.edu/research/faculty/

lindquist.html

Kevin S. McCann http://www.uoguelph.ca/zoology/

department/people/faculty/k mccann.htm

Mark J. Newman http://www-personal.umich.edu/∼mejn/
Zoltán N. Oltvai http://path.upmc.edu/people/faculty/oltvai-lab/

Sándor Pongor http://www.icgeb.org/sandor-pongor.html

Nikos A. Salingaros http://www.math.utsa.edu/sphere/salingar/

Ricard V. Solé http://complex.upf.es/

Steven H. Strogatz http://tam.cornell.edu/Strogatz.html

Tamás Vicsek http://angel.elte.hu/∼vicsek/
http://www.cfinder.org

Duncan J. Watts http://www.sociology.columbia.edu/

fac-bios/watts/faculty.html
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Libraries and General Databases

E-libraries http://www.arxiv.org

http://www.santafe.edu/research/publications/

publications-working-papers.php

http://cogprints.org

http://comdig.com

http://www.nslij-genetics.org/wli/1fnoise/

Mathematical Tools

Network map http://vlado.fmf.uni-lj.si/pub/networks/pajek

construction http://biodata.mshri.on.ca/osprey/servlet/Index

http://strc.herts.ac.uk/bio/maria/NetBuilder/

http://paup.csit.fsu.edu

http://taxonomy.zoology.gla.ac.uk/rod/

treeview.html

Network modules http://www.cfinder.org

Digital organism http://physis.sourceforge.net

development programs

Protein Networks

Protein interaction databases http://www-unix.mcs.anl.gov/compbio

(mostly yeast) http://yeast.cellzome.com

http://www.bind.ca

http://dip.doe-mbi.ucla.edu/

Human protein reference http://hprd.org

database
Subnetwork analysis http://networks.gersteinlab.org/

Metabolic Networks

Modeling of biochemical reactions http://www.gepasi.org/

Whole cell simulation http://www.nrcam.uchc.edu/

Metabolic networks (general) http://metacyc.org

Metabolic networks (yeast) http://www.genome.ad.jp/kegg/

http://systemsbiology.ucsd.edu/

organisms/yeast.html

Metabolic networks http://gcrg.ucsd.edu/organisms/

(Escherichia coli) ecoli.html

Red blood cell http://systemsbiology.ucsd.edu/

organisms/rbc.html
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Transcriptional Networks

Gene interactions and pathways http://www.biocarta.com/genes/

allpathways.asp

http://www.cifn.unam.mx/

Computational Genomics/regulondb

http://strc.herts.ac.uk/bio/maria/

NetBuilder/

Escherichia coli transcriptional http://www.weizmann.ac.il/mcb/UriAlon

network

Yeast sporulation network http://cmgm.stanford.edu/pbrown/

sporulation

Gene expression databases http://www.ebi.ac.uk/arrayexpress

http://www.ncbi.nih.gov/geo

http://transcriptome.ens.fr

http://www.gene-regulation.com

Specific Biological Databases

Bacterial chemotaxis http://www.pdn.cam.ac.uk/groups/

simulation program comp-cell

Homepage of complex http://www.physionet.org

physiological signals

Neuronal networks http://www.cocomac.org/databases.htm

http://www.ncl.ac.uk/biol/research/

psychology/nsg/neuroinformatics.htm

Social Nets

Social network analysis http://www.sfu.ca/∼insna/
Business networks http://www.theyrule.net

Dark networks http://www.orgnet.com/hijackers.html

Zachary friendship network http://vlado.fmf.uni-lj.si/pub/

networks/data/UciNet/zachary.dat

Internet http://moat.nlanr.net/AS/

Textual networks www.textarc.org

Network visualizations www.visualcomplexity.com





B Glossary

This glossary explains a few of the key words used in the book. I would
like to apologize if a specific meaning is sometimes given for a word to
define it in a way which is used only in this book and slightly restricts
or modifies the definition of the same word used in other contexts.
Glossary items are marked with italics in the explanations for cross-
reference.

Allometric scaling laws. Allometric scaling laws cover a wide variety
of empirical scaling relationships where the given property is a power
law function of the mass. The defining equation of allometric scaling
laws is P = cMα, where P means the property, c is a constant, M is the
mass of the organism or organelle, and α is a scaling exponent which
varies depending on the nature of P . In the most studied example,
viz., Kleiber’s law (1932), P is the basal metabolic rate and the scaling
exponent α is 3/4. In other examples, the value of the exponent may
be different, e.g., the dependence of heart rate (α = −1/4), life span
(α = 1/4), the radii of aortas and tree trunks (α = 3/8), the unicellular
genome length (α = 1/4), and RNA concentration (α = −1/4), on the
mass all have different exponents in their scaling relationship.

Assortativity. We call a network assortative, if similar elements of
the network are selectively and preferentially linked. The elements may
be similar by their degree or by any other property.

Attractor. The attractor is a set of network states on the stability
mono- or multi-landscapes which behaves as a focus where members of
a much larger set of network states converge as the network undergoes
dynamical changes.

Betweenness centrality. The betweenness centrality of an element
i is the fraction of shortest paths between any pair of elements in the
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network which pass through the i th element. (For the definition of the
shortest path, see path length.)

Canalization. Canalization refers to a reduced sensitivity of an orga-
nism to noise from the environment or towards changes in its genotype.
In Waddington’s formulation, canalization is “the capacity to produce
a particular definite end-result in spite of a certain variability both in
the initial situation from which development starts and in the condi-
tions met with during its course.”

Chaperone. A chaperone, or molecular chaperone, is a protein which
helps the folding of other proteins by preventing their aggregation
or by partially unfolding them to give them a new opportunity to
refold. Chaperones may be RNAs. Both protein- and RNA-chaperones
may help the folding of RNAs, besides their help in protein folding. A
chaperone is often a stress protein or heat shock protein, which means
that its synthesis is induced by stress or heat shock, respectively.

Clustering (coefficient). Clustering occurs if neighbors of an ele-
ment have a good chance of being connected. The clustering coeffi-
cient is the probability that two neighbors of a given element are also
neighbors of each other. The clustering coefficient C for an element is
the number of links between all the neighbors of the element (n) divi-
ded by the number of links that could possibly exist between all the
neighbors of the element (N), i.e., C = n/N (Watts, 1999). Clustering
is also often called network transitivity. The range of the clustering
coefficient varies between 0 and 1, and the average of all clustering
coefficients gives a general measure of the cluster (triangle) formation
in a network (Barabasi and Oltvai, 2004).

Cognitive dimensions. In the context of the present book, cogni-
tive dimensions refer to the number of different views (personalities)
a person can simultaneously accommodate and evaluate. This process
requires the internalization, relative separation and internal conflicts
of the intentions, drives, words and deeds of the real or imagined per-
sons, groups of persons or value sets. A typical sentence to reflect this
complexity is the following: I believe that A supposes that B intends
to guess how C understands what D thinks. Dunbar (2005) shows that
the typical average cognitive limit is around 5 cognitive dimensions.
However, exceptional minds can think to the 6th or higher order. The
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cognitive dimensions probably reflect the number of stable oscillation
sets a certain person’s brain sections can simultaneously accommodate
and process.

Creative elements. Creative elements are special elements, or ele-
ment sets of the networks, which occupy a central position, a structural
hole in the network integrating the communication of the entire net-
work. Creative elements are very dynamic, performing a partially ran-
dom sampling of the whole network, and connecting distant network
modules. Creative elements have transient, weak links leading to im-
portant positions (often hubs) in the network, and become especially
important when the whole system experiences an atypical situation
requiring a novel, creative solution. Typical examples of creative ele-
ments are the active centres of proteins, the stress proteins of cells,
stem cells of organisms, practically any neuron in our brain, and (last
but not least) creative people, or groups. Creative elements play a key
role in the development, survival and evolvability of complex systems
(Csermely, 2008).

Degeneracy. A network is degenerate if structurally different ele-
ments of the network show a functional identity under special circum-
stances. (See also redundancy .)

Degree (distribution). The degree of a network element corresponds
to the number of links of this element. The degree distribution is the
histogram of the total number of elements of the network with a given
degree. The degree distribution is a Poissonian distribution for the
Erdős–Rényi random graph and exponential for single-scaled graphs.
It follows a power law for scale-free graphs (Barabasi and Oltvai, 2004).
The average degree is usually called the coordination number of the
network. The origin of the expression ‘coordination number’ refers to
regular lattices where all elements have the same degree.

Element. The element is a single building block of a network . The
element is also called a vertex in graph theory, site in physics, or actor
in sociology. The number of elements is called the order of the graph.

Emergent property. The emergent property of a network is derived
from the interaction of the network elements, and is not observable or
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inherent in any element of the network considered separately.

Epigenetic inheritance. We call inheritance epigenetic if the inheri-
table property is not transmitted via a DNA sequence but is inherited
by means of other molecular mechanisms. Such a mechanism may use
the modulation of DNA accessibility by DNA methylation or histone
modification. Epigenetic molecular mechanisms also include RNA- and
protein-based inheritance.

Evolvability. Evolvability is the ability of random genetic variation to
produce phenotypic changes that can increase fitness (intrinsic evolva-
bility), or the ability of a population to respond to selection (extrinsic
evolvability). Extrinsic evolvability depends on intrinsic evolvability as
well as on external variables such as the history, size and structure of
the population (Rutherford, 2003). In the present book, evolvability
is mostly used in a broader context, accommodating all mechanisms
which determine the ability of a network to respond to changes in the
environment.

Exponential cutoff (decay). Most natural scale-free distributions
lose their scale-free pattern after a few orders of magnitude. Beyond
the scale-free distribution, the probability of the extreme value decays
very sharply, usually in an exponential manner.

Fitness. The survival value and reproductive capacity of a given phe-
notype as compared with the average of the population or other geno-
types of the population.

Fractal. Fractal objects are generated by a recursive process in which
self-similar objects of different size are repeated. The self-similar ob-
jects have a scale-free size distribution. The distribution is characteri-
zed by the fractal dimension. Fractal behavior can be defined in time
intervals as well (see multifractal).

Fractal dimension (Hausdorff dimension, Hurst exponent).
Elements of self-similar, fractal objects have a scale-free size distribu-
tion. If we try to fill a larger object with smaller objects, we get the
equation N = (L/l)d, where N is the number of smaller objects fitted
into the larger object, L/l is the ratio of the characteristic measure of
the two objects of different size, and d is the exponent, which is cal-
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led the fractal dimension. The fractal dimension in space is also called
the Hausdorff dimension, and in time the Hurst exponent. In fractal
objects, d is not an integer.

Fringe area. The fringe area is an overlap between two modules or two
independent networks. It may either facilitate or prevent communica-
tion between the two connected modules or networks. This property
of the fringe area can be tightly regulated and may change from time
to time (Agnati et al., 2004).

Genetic drift. Genetic drift is a random change in allele frequency
within a population. If the population is isolated and genetic drift
continues for long enough, it may lead to specitation.

Genome cleansing. The cleansing of the genome occurs, when stress
makes the consequences of otherwise silent mutations visible at the
level of the phenotype. Under stress, organisms that have mutations
with unfavorable consequences will be sorted out by natural selection.
As a consequence the average genome of the whole population will be
more uniform, and will ‘shed’ many of the unfavorable silent mutations.

Giant component. The giant component is the largest part of the
network , where all elements are connected to each other. The giant
component contains most of the network elements and appears after
the percolation threshold.

Hub. A hub is a highly connected element of the network . A hub
usually has more than 1% of total connections.

Keystone species. The keystone species is an important hub of an
ecosystem whose removal triggers many secondary extinctions and may
cause the fragmentation of the whole network .

Le Chatelier principle. The Le Chatelier–Brown principle describes
the behavior of a system when its equilibrium is perturbed. If a system
in equilibrium suffers an effect which changes its conditions, the system
will adjust itself to minimize this change.



332 B Glossary

Link. A link is a connection between two network elements. In graph
theory, the link is called an edge of the graph. In molecular networks,
the link is a bond, and in social networks, the word ‘tie’ is more often
used. The number of links is the size of the graph.

Module. Modules are groups of network elements that are relatively
isolated from the rest of the network and are functionally or physically
linked to each other. Modules may arise from parcellation of a larger
network, or from integration of several smaller networks.

Molecular crowding. Molecular crowding occurs if a significant vo-
lume of a solution, e.g., the cytoplasm, is occupied by macromolecules.
Under such conditions, a large amount of water molecules are tran-
siently bound to the macromolecules present and several phenomena
will be drastically changed. As an example of this, protein–protein in-
teractions will be grossly favored in crowded solutions.

Motif. Motifs, network blocks, or patterns are small groups of network
elements with characteristic linkage patterns. Typical motifs are the
feed-forward loops and feedback loops. (See also negative feedback .)

Multifractal. This is a distribution in time or space which displays
a complex scale-free pattern with several scale-free distributions su-
perimposed upon each other and in which the overall distribution has
more than one scaling exponent. Multifractal behavior is usually found
in time series. More precisely, time dependence in mathematical ana-
lysis is typically continuous with continuous derivatives. It can thus be
approximated in the vicinity of a time ti by a so-called Taylor series
or power series:

f(t) = a0 + a1(t− ti) + a2(t− ti)2 + · · ·+ ah(t− ti)h + · · · ,

where h is an integer. In contrast, most time series found in ‘real’
experiments cannot be approximated by the above formula. If a non-
integer number of h is enough to quantify a local singularity in a noisy
time series, we call the time series a fractal series. If we find a single
value h = H for all singularities ti in the signal, then the signal is
a monofractal. If we need several distinct values to describe the time
series, than the signal is multifractal.

Negative feedback. Negative feedback is a common regulatory net-
work motif , in which an increase in the quantity or function of a net-
work element provokes an inhibition of the network elements which
caused the increase.
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Nested sync. This expression is used in the present book to denote
the highly hypothetical induction of synchrony between oscillations at
different network levels. In other words, nested sync occurs if an ele-
ment of a top network synchronizes its oscillations with the oscillation
of the whole top network, and this phenomenon continues through at
least three hierarchical levels of networks. (See also syntalansis.)

Nestedness. The elements of most real networks are not points, but
complex networks themselves. This means that real networks are of-
ten nested. However, the elements of abstract mathematical networks,
known as graphs, are points with no internal structure.

Netquake. A netquake occurs if a network has a restricted relaxation
and, after the gradual build-up of a tension, the network reaches a
state of self-organized criticality . Restricted relaxation means that a
perturbation of the network is not easily dissipated in the network. In
the self-organized critical state, the probability and extent – size and
duration – of netquakes often follow a scale-free distribution. (See also
pink noise.)

Netsistance. The netsistance of a network refers to its stability
against the removal of its elements or links. Whilst the network is
able to preserve its giant component and percolation, it can be said to
have maintained its netsistance. Loss of netsistance implies the death
of the network if it is a biological system like a cell or other living
organism.

Network. A network is a set of elements which are connected to each
other by links. The elements of most real networks are not points, but
complex networks themselves. This means that real networks are of-
ten nested . However, the elements of abstract mathematical networks,
called graphs, are points with no internal structure.

Network diameter. The network diameter is the maximal number
of links in the shortest path between any pair of network elements.

Node. A node is a network element with more than three links.
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Path length. The path length is the number of links we have to pass
along when we travel between two network elements. The shortest path
length is the length of the shortest route between the two elements.
The characteristic path length is the average of all the shortest path
lengths in the network, and gives a good measure of the navigability of
the network (Barabasi and Oltvai, 2004). (See also network diameter .)

Percolation (threshold). Percolation is the status of the network
when it has a giant component , so that most of the network elements
are connected with each other and can therefore communicate. The
percolation threshold is the number of links when the network reaches
percolation.

Pink noise. Noise is usually characterized as a sum of sinusoidal
waves. The distribution of the constituent sinusoidal waves follows
the equation P = cD−α, where P is the contribution of the sinusoidal
wave, c is a constant, D is the frequency, and α is a scaling exponent.
We call the noise pink if α lies between zero and two. The zero and
two exponents correspond to white and brown noise, respectively. Pink
noise is also called colored noise, flicker noise, crackling noise or Bar-
khausen noise. The names 1/f , 1/t or 1/τ noise refer to the situation
where α is exactly unity. In pink noise, rare events have a greater ef-
fect on the noise than frequent events. This is the reason why this
noise is said to be pink. The spectrum of pink noise is biased towards
the low frequencies, which correspond to the red light in the spec-
tral analogy with visible light. Therefore the spectrum of pink noise is
‘reddened’ compared to white noise, i.e., it is pink. Pink noise contains
disturbances equally on all time scales, which means that pink noise
is scale-free. In other words, netquakes of self-organized critical events
are pink-noise processes.

Punctuated equilibrium. Punctuated equilibrium originally refer-
red to a model of evolution in which change occurs in relatively ra-
pid bursts followed by longer periods of stasis (Gould and Eldredge,
1993). In the present book, the expression is used in a more general
context. Here, punctuated equilibrium refers to changes of a network
on a ‘rough’ stability landscape, where the probability of transition bet-
ween local minima is relatively low. This gives the same rapid burst and
stasis dynamics that characterize the original description, but makes
the expression useful to describe changes on the protein energy land-
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scape, the evolutionary fitness landscape, the innovation landscape,
software design landscape, scientific progress landscape, the landscape
of economic markets, the diegetic landscape of plays, films and novels
and any other ‘rough’ landscapes.

Random graph. The random graph is a mathematical representation
of a network in which network elements are connected at random. The
random graph has a Poissonian (‘single scale’) degree distribution, in
which nodes with degree deviating significantly from the average degree
are extremely rare (Barabasi and Oltvai, 2004).

Redundancy. Two structurally identical network elements are re-
dundant. These elements double a certain function. Redundancy is
different from degeneracy , where the functional identity is displayed
only under special circumstances and arises from structurally different
elements.

Regular lattice. The regular lattice is a network in which all elements
have the same degree, and are arranged in highly periodical manner.

Resilience. The resilience of a network refers to its resistance against
the removal of its elements or links. Resilience is usually measured by
the disturbance of network communication (percolation). The expres-
sion ‘resilience’ is mainly used for ecological networks. In the present
book, this form of network stability is generalized to all networks and
called netsistance.

Robustness. A network is said to be robust if it displays a low sen-
sitivity to environmental fluctuations (network perturbations). In eco-
systems, robustness against the removal of links and elements is called
resilience or (in the present book) netsistance.

Scale-free. A network is scale-free if its the degree distribution follows
a power law. Generally, the distribution of scale-free systems can be
written as P = cM−α, where P is the probability, c a constant, M
the measure, and α a scaling exponent. The names Hurst exponent or
fractal dimension are used for the scaling exponent when the scale-free
distribution is observed in time or space, respectively. Scale-free dis-
tributions are best visualized if we take the logarithm of the above
equation to obtain log P = log c − α log M , which shows that the
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logarithm of the probability is a linear function of the logarithm of
the measure. If we plot the data with this log–log representation (see
Fig. 2.5 of Sect. 2.2), we get a straight line. Exceedingly large numbers
have a non-zero probability in scale-free distributions. For an order of
magnitude higher value, we always have a probability just an order of
magnitude lower (Barabasi and Oltvai, 2004). (See also pink noise.)

Self-organized criticality. Self-organized criticality lacks a clear-cut
definition. In the present book, the expression refers to networks where
improper relaxation and an increasing tension spontaneously develop
long-range correlations between network elements. The increasing cor-
relations lead to a statistical steady state of criticality which is cha-
racterized by the occurrence of collective behavior manifested by ava-
lanches. The avalanches display a scale-free size distribution and occur
with a scale-free probability. (See also pink noise.)

Silent mutations (hidden mutations). Mutations of the DNA re-
main silent if their effect is not exposed at the level of the phenotype.
Silent mutations may occur in DNA sequences which do not code pro-
teins and are not involved in gene regulation. These mutations may
remain silent forever. Silent mutations may also be conditional. These
silent mutations may be revealed under specific (stressful) conditions,
where the rest of the cellular networks cannot substitute the missing
function by redundant or degenerate network segments. A specific form
of silent mutation is hidden by chaperones. Here the mutation-induced
changes in protein structure are repaired by chaperones. This repair
becomes compromised after stress, when chaperones become occupied
by damaged proteins. Thus, stress often exposes silent mutations at
the level of the phenotype and makes them the subject of natural selec-
tion. This may cause a cleansing of the genome (where the occurrence
of the silent mutation in the genome of the population is decreased)
or derail canalization and give rise to a new dominant phenotype. In
extreme cases, the exposure of silent mutations may even cause a jump
in evolution.

Small world. We call a network a small world when its characteristic
path length is close to the rather small path length of an Erdős–Rényi
random graph, but its clustering coefficient is much higher than that
of the random graph (Watts, 1999).
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Social dimensions. The social dimension is the number of features
of a social actor, i.e., a person or an element of a social network , which
helps the classification of this element by other elements of the net-
work. People often use social dimensions to direct and define efficient
search and communication in social networks. Social dimensions are
also used as an organizational pattern for clustering , motif and mo-
dule formation in assortative social networks.

Stability landscape. On the stability landscape, each state (para-
meter set) of the network is plotted as a function of a ‘goodness
value’. The stability landscape may characterize any networks, such
as proteins (energy landscape), ecosystems (fitness landscape), social
networks (economy, innovation, design, scientific progress, etc., land-
scapes), informational, textual networks (the diegetic landscape of dra-
mas, films and novels), etc. The ‘goodness value’ depends on the form
of the stability landscape. The goodness value may be energy, fitness,
market value, story integrity, etc. ‘Rough’ landscapes have very high
goodness values, making high saddles between their local minima. High
saddles make the probability of transition low. In contrast, ‘buffed’
landscapes have low saddles, which make the transition probability
high. Rough landscapes often produce a punctuated equilibrium and
may give rise to self-organized criticality .

Stress. Stress is any unexpected, large and sudden perturbation in
the life of the network , (1) to which the network does not have a
prepared adaptive response, or (2) where the network does not have
time to mobilize an adaptive response. Stress in this book is used
differently from stress in the usual sense in physics, where it is a force
that produces strain on a physical body.

Syntalansis. Syntalansis is the extensive synchronization of the oscil-
lators of network elements. The development of syntalansis displays a
phase transition. As the difference between the frequencies of different
oscillators is decreased below a certain threshold, they will suddenly
all become synchronized, thereby achieving syntalansis. This pheno-
menon is similar to the percolation threshold .

Topological phase transition. A topological phase transition oc-
curs if a continuous increase in the number of perturbations provokes
a singular change in the global topology of the network. The global
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topology is best monitored by the measure G/N , where G is the size
of the largest connected component of the network and N is the total
number of links. Alternatively, the measure kmax/M can also be used,
where kmax is the largest degree of the network and M is the number
of edges in the network (Derenyi et al., 2004; Palla et al., 2004).

Weak links. A link of a network is weak if its addition or removal
does not change the mean value of a target measure, which is usually
an emergent property of the network, in a statistically discernible way.
Weak links stabilize most networks. The effects of weak links are des-
cribed in every chapter of the present book.
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14. ∗ Almaas, A., Kovács, B., Vicsek, T., Oltvai, Z.N. and Barabasi, A.-L.
(2004): Global organization of metabolic fluxes in the bacterium Es-
cherichia coli . Nature 427, 839–843

15. Allesina, S. and Bodini, A. (2004): Who dominates whom in the eco-
system? Energy flow bottlenecks and cascading extinctions. J. Theor.
Biol. 230, 351–358

16. Alon, U. (2003): Biological networks: The tinkerer as an engineer.
Science 301, 1866–1867

17. Alon, U., Surette, M.G., Barkai, N. and Leibler, S. (1999): Robustness
in bacterial chemotaxis. Nature 397, 168–171

18. Alvarez, L.W, Alvarez, W., Asaro, F. and Michel H.V. (1980): Extra-
terrestrial cause for the cretaceous–tertiary extinction. Science 208,
1095–1108

19. Amaral, L.A.N., Scala, A., Barthelemy, M. and Stanley, H.E. (2000):
Classes of small-world networks. Proc. Natl. Acad. Sci. U.S.A. 97,
11149–11152

20. Ansari, A., Berendzen, J., Bowne, S.F., Frauenfelder, H., Iben, I.E.T.,
Sauke, T.B., Shyamsunder, E. and Young, R.D. (1985): Protein states
and proteinquakes. Proc. Natl. Acad. Sci. U.S.A. 82, 5000–5004



References 341

21. Antonovsky, A. (1985): Health, Stress and Coping , Jossey-Bass Publ.
San Francisco, USA

22. Aoki, M. (1998): The subjective game form and institutional evo-
lution as punctuated equilibrium. Stanford University Working Pa-
pers No. 98011 (http://www-econ.stanford.edu/faculty/workp/
swp98011.pdf)

23. Aon, M.A., Cortassa, S. and O’Rourke, B. (2004a): Percolation and
criticality in a mitochondrial network. Proc. Natl. Acad. Sci. U.S.A.
101, 4447–4452

24. Aon, M.A., O’Rourke, B. and Cortassa, S. (2004b): The fractal archi-
tecture of cytoplasmic organization: Scaling kinetics and emergence in
metabolic networks. Mol. Cell. Biochem. 256/257, 169–184

25. Aranda-Anzaldo, A. and Dent, M.A. (2003): Developmental noise,
ageing and cancer. Mech. Aging Dev. 124, 711–720

26. Arendt, H. (1973): The Origins of Totalitarianism, Harcourt, Orlando
FL USA

27. Argollo de Menezes, M. and Barabasi, A.-L. (2004): Separating internal
and external dynamics of complex systems. Phys. Rev. Lett 93, 068701

28. Ariaratnam, J.T. and Strogatz, S.H. (2001): Phase diagram for the
Winfree model of coupled nonlinear oscillators. Phys. Rev. Lett. 86,
4278–4281

29. Arita, M. (2004): The metabolic world of Escherichia coli is not small.
Proc. Natl. Acad. Sci. U.S.A. 101, 1543–1547

30. Arkin, A., Ross, J. and McAdams, H.H. (1998): Stochastic kinetic ana-
lysis of developmental pathway bifurcation in phage lambda-infected
Escherichia coli cells. Genetics 149, 1633–1648

31. Arrow, K. (1974): The Limits of Organization, Norton and Co., New
York NY, USA

32. Atkinson, R.P.D., Rhodes, C.J., Macdonald, D.W. and Anderson, R.M.
(2002): Scale-free dynamics in the movement patterns of jackals. Oikos
98, 134–140

33. Avnir, D., Biham, O., Lidar, D. and Malcai, O. (1998): Is the geometry
of nature fractal? Science 279, 39–40

34. Axelrod, R. (1997): The Complexity of Cooperation, Princeton Univer-
sity Press, Princeton NJ, USA

35. Axtell, R.L. (2001): Zipf distribution of U.S. firm sizes. Science 293,
1818–1820

36. Azbel, M.Y. (1999): Empirical laws of survival and evolution: Univer-
sality and implications. Proc. Natl. Acad. Sci. U.S.A. 96, 15368–15373

37. Baars, B.J. (2002): The conscious access hypothesis: Origins and recent
evidence. Trends Cognit. Sci. 6, 47–52

38. Bacon, F. (1620): Novum Organum, Cambridge University Press, Cam-
bridge, UK (2000)



342 References

39. Bagler, G. and Sinha, S. (2005): Network properties of protein struc-
tures. Physica A 346, 27–33

40. Baish, J.W. and Jain, R.K. (2000): Fractals and cancer. Cancer Res.
60, 3683–3688

41. ∗ Bak, P. (1996): How Nature Works. The Science of Self-Organized
Criticality , Springer-Verlag, New York

42. Bak, P. and Paczuski, M. (1995): Complexity, contingency and critica-
lity. Proc. Natl. Acad. Sci. U.S.A. 92, 6689–6696

43. Bak, P. and Sneppen, K. (1993): Punctuated equilibrium and criticality
in a simple model of evolution. Phys. Rev. Lett. 71, 4083–4086

44. ∗ Bak, P., Tang, C. and Wiesenfeld, K. (1987): Self-organized criticality:
An explanation of 1/f noise. Phys. Rev. Lett. 59, 381–384

45. Bak, P., Paczuski, M. and Shubik, M. (1997): Price variations in a stock
market with many agents. Physica A 246, 430–453

46. Baker, S.N., Spinks, R., Jackson, A. and Lemon, R.N. (2001): Syn-
chronization in monkey motor cortex during a precision grip task. I.
Task-dependent modulation in single-unit synchrony. J. Neurophysiol.
85, 869–885

47. ∗ Ball, K.D., Berry, R.S., Kunz, R.E., Li, F.-Y., Proykova, A. and
Wales, D.J. (1996): From topographies to dynamics on multidimensio-
nal potential energy surfaces of atomic clusters. Science 271, 963–966

48. Banavar, J.R., Maritan, A. and Rinaldo, A. (1999): Size and form in
efficient transportation networks. Nature 399, 130–132

49. Bandura, A. (1997): Self-Efficacy: The Exercise of Control , W.H. Free-
man & Co., San Francisco, USA

50. ∗ Barabasi, A.L. (2002): Linked: The New Science of Networks, Perseus
Press

51. Barabasi, A.L. (2005): The origin of bursts and heavy tails in human
dynamics. Nature 435, 207–211

52. ∗∗ Barabasi, A.L. and Albert, R. (1999): Emergence of scaling in ran-
dom networks. Science 286, 509–512

53. Barabasi, A.L. and Oltvai, Z.N. (2004): Network biology: Understan-
ding the cell’s functional organization. Nature Rev. Gen. 5, 101–114

54. Barabasi, A.L., Buldyrev, S.V., Stanley, H.E. and Suki, B. (1996): Ava-
lanches in the lung: A statistical mechanical model. Phys. Rev. Lett.
76, 2192–2195

55. Barbosa, L.A., Castro e Silva, A. and Kamphorst Leal da Silva,
J. (2005): On the universal scaling relations in food webs.
Cond-mat/0507184

56. ∗ Bard, A. and Söderquist, J. (2002): Netocracy: The New Power Elite
and Life after Capitalism, FT Press, Upper Saddle River NJ, USA

57. Barrahona, M. and Pecora, L.M. (2002): Synchronization in small-world
systems. Phys. Rev. Lett. 89, 054101



References 343
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References 353

224. Estrada, E. (2005): Virtual identification of essential proteins within the
protein interaction network of yeast. Cond-mat/0505005. Proteomics
(in press)

225. Eysenck, H.J. (1970): The Structure of Human Personality , Methuen,
London

226. Fagan, W.F. (1997): Omnivory as a stabilizing feature of natural com-
munities. Am. Nat. 150, 554–567

227. Fares M.A., Ruiz-Gonzalez M.X., Moya A., Elena S.F. and Barrio E.
(2002): GroEL buffers against deleterious mutations. Nature 417, 398

228. Farkas, I., Helbing, D. and Vicsek, T. (2002): Mexican waves in an
excitable medium. Nature 419, 131–132

229. Farmer, J.D. and Lo, A.W. (1999): Frontiers of finance: Evolution and
efficient markets. Proc. Natl. Acad. Sci. U.S.A. 96, 9991–9992

230. Feder, J.H., Rossi, J.M., Solomon, J., Solomon, N. and Lindquist, S.
(1992): The consequences of expressing hsp70 in Drosophila cells at
normal temperatures. Genes Dev. 6, 1402–1413

231. Feenstra, R. (1996): Trade and uneven growth. J. Dev. Econ. 49, 229–
256

232. Feibleman, J.K. (1954): The integrative levels in nature. Br. J. Phylos.
Sci. 5, 59–66

233. Fell, J., Klaver, P., Lehnertz, k., Grunwald, T., Schaller, C., Elger, C.E.
and Fernandez, G. (2001): Human memory formation is accompanied
by rhinal-hippocampal coupling and decoupling. Nature Neurosci. 4,
1259–1264

234. Fenimore, P.W., Fraunefelder, H., McMahon, B.H. and Parak, F.G.
(2002): Slaving: Solvent fluctuations dominate protein dynamics and
functions. Proc. Natl. Acad. Sci. U.S.A. 99, 16047–16051

235. Ferrarini, L., Bertelli, L., Feala, J., McCulloch, A.D. and Paternostro,
G. (2005): A more efficient search strategy for aging genes based on
connectivity. Bioinformatics 21, 338–348

236. Ferrer Cancho, R. and Sole, R.V. (2001): The small-world of human
language. Proc. Roy. Soc. B 268, 2261–2265

237. Ferrer Cancho, R. and Sole, R.V. (2003): Least effort and the origins of
scaling in human language. Proc. Natl. Acad. Sci. U.S.A. 100, 788–791

238. ∗∗ Fewell, J.H. (2003): Social insect networks. Science 301, 1867–1870
239. Feynman, R.P., Leighton, R.B. and Sands, M. (1965): The Feynman

Lectures on Physics, Vol. 3. Quantum Mechanics. Addison-Wesley Pro-
fessional, Boston MA, U.S.A.. Sect. 21.9

240. Fink, L.H. (1991): Proceedings of bulk power system voltage pheno-
mena II. Voltage stability and security. ECC Inc.

241. Finnegan, E.J. (2001): Epialleles – A source of random variation in
times of stress. Curr. Op. Plant Biol. 5, 101–106

242. Flomenbom, O., Velonia, K., Loos, D., Masuo, S., Cotlet, M., Engel-
borghs, Y., Hofkens, J., Rowan, A.E., Nolte, R.J.M., van der Auweraer,



354 References

M. and de Schryver, F.C. (2005): Stretched exponential decay and cor-
relations in the catalytic activity of fluctuating single lipase molecules.
Proc. Natl. Acad. Sci. U.S.A. 102, 2368–2372

243. Fowler, M., Beck, K., Brant, J. and Opdyke, W. (1999): Refactoring ,
Addison-Wesley Professional, Boston MA, USA

244. Fox, J.C. and Keaveny T.M. (2001): Trabecular eccentricity and bone
adaptation. J. Theor. Biol. 212, 211–221

245. Fox, J.J. and Hill, C.C. (2001): From topology to dynamics in bioche-
mical networks. Chaos 11, 809–813

246. Fox, J.C., Snyder, A.Z., Vincent, J.L., Corbetta, M., van Essen, D.C.
and Raichle, M.E. (2005): The human brain is intrinsically organized
into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci.
U.S.A. 102, 9673–9678
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