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After the discovery of the need for extensive assistance in protein folding in the case of
many nascent or damaged proteins, heat shock proteins and other stress-induced proteins
have come to be regarded as molecular chaperones; thus their major cellular function is
considered to be established. When protein folding is studied in vitro, the experimenter has
to use rather diluted conditions to prevent unwanted aggregation. Dilution also helps to
make the Kinetical analysis easier, and conserves precious research materials. Contrary to
these usual experimental conditions, the cellular environment is crowded (Zimmerman and
Minton, 1993). Molecular crowding promotes protein aggregation and thus enhances the
need for chaperone action. On the other hand, bona fide chaperones are not the only
cellular solutions for aggregation-protection. Several "innocent bystanders,” such as
tubulin (Guha et. al., 1998) or even small molecules (lipids, other amphiphyles, sugars, a
class of compounds called as chemical chaperones, Welch and Brown, 1996) may assist
folding and prevent aggregation albeit at higher concentrations than the efficient
concentration of heat shock, or other stress-induced proteins. Though we have several
important lines of evidence, which undoubtedly show the necessity of chaperones in
folding of numerous protein Kinases, receptors, actin, tubulin, etc. (Hartl, 1996), we do not
really know how big is the segment of the life of an ordinary chaperone during which it
“chaperones” unfolded or misfolded proteins in eukaryotic cells.

I should make it clear that with the above argumentation, I do not want to question the
importance of chaperones in folding-assistance. Nevertheless, | would like to stress that
there is enough room to think about other important functions of chaperones related, but
not equal to their participation in protein folding. One of these possibilities is that peptide-
binding chaperones are the "dustmen™ of the cells. The proteasomal apparatus is most
probably linked with oligo- and dipeptidases, and therefore the "leaking" peptide- end
products of proteasomal degradation (Kisselev et. al., 1998) are presumably cleaved
further into single amino acids. However, direct evidence for this efficient degradation-
completion is missing.

Released peptide segments may often contain elements of important binding sites and thus
might efficiently interfere with signaling and, metabolic processes. If this happened, this
would be a disaster for the cell. Peptides need to be eliminated, and safeguarding
mechanisms must exist to correct the occasional "sloppiness” of degradative processes.
Chaperones are excellent candidates for this purpose, and their role in collection of
"peptide-rubbish” must be considered, besides their well-established function in peptide
presentation for the immune system (Srivastava et. al., 1998).

As yet another important, and non-conventional, aspect of chaperone action (from the
many more possible) lies in their incredible stickiness. Chaperones often form dimers, and
tend to associate to tetra-, hexa-, octamers and to even higher oligomers (Csermely et. al.,
1998, Trent et. al., 1998, Benaroudj et. al., 1996). Oligomerization usually affects only a
few percent of the total protein; but addition of divalent cations, certain nucleotides, heat
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treatment, etc enhances oligomer formation. It is important to note that oligomerization
studies were usually performed under "normal,” in vitro experimental conditions, using a
few mg/ml of purified chaperone. The in vivo concentration of chaperones is estimated to
be around a hundred-, or thousand-fold higher. This may significantly enhance the in vivo
oligomerization tendencies of these proteins. Oligomer formation of chaperones might be
further promoted by the large excluded volume effect of the "molecularly crowded"”
cytoplasm (Zimmerman and Minton, 1993).

Different chaperones associate with each other. The Hsp90-organized foldosome may
contain almost a dozen independent chaperones, or co-chaperones. The stoichiometry and
affinity of these associations dynamically varies, and the variations are affected by the
folding state of the actual target (or targets), which associate with these extensive folding
machinery (Csermely et. al., 1998).

Besides binding to themselves, to their sibling-chaperones, and to their targets, many
chaperones bind to actin filaments, tubulin, and other cellular filamentous structures, such
as intermediate filaments. There is a chaperone complex associated with the centrosome
(Wigley et. al., 1999), and several chaperones, especially Hsp90 were considered to be
involved in the direction of cytoplasmic traffic (Pratt, 1997).

The above model, which describes chaperones as a highly dynamic "appendix" of various,
and often quite poorly identifiable, cytoplasmic filamentous structures, is reminiscent of
the early view (Wolosewick and Porter, 1979; Schliwa et al., 1981) about the
microtrabecular network of the cytoplasm. Although a rather energetic debate has
developed about the wvalidity of the electron microscopical evidence of the
microtrabeculae, several independent findings support the existence of a cytoplasmic and
nuclear mesh-like structure (Clegg, 1984; Jacobson and Wojcieszyn, 1984; Luby-Phelps
etal., 1988; Penman and Penman, 1997; Hendzel et al., 1999). The major cytoplasmic
chaperones (TCP1/Hsp60 and Hsp90 and their associated proteins) may well form a part of
this network in cells.

One of the major advances of the eukaryotic cell is probably centered around its superior
compartmentalization and organization compared with that of the prokaryotic organisms.
However, cellular order must be maintained and repaired. Chaperones may be important
elements of this job in eukaryotes. Further studies to explore the details of this putative
function may easily lead to exciting, novel aspects of chaperone action.
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