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Chance and necessity in the evolution of minimal
metabolic networks
Csaba Pál1,2*, Balázs Papp3*, Martin J. Lercher1,4, Péter Csermely5, Stephen G. Oliver3 & Laurence D. Hurst4

It is possible to infer aspects of an organism’s lifestyle from its gene
content1. Can the reverse also be done? Here we consider this issue
by modelling evolution of the reduced genomes of endosymbiotic
bacteria. The diversity of gene content in these bacteria may reflect
both variation in selective forces and contingency-dependent loss
of alternative pathways. Using an in silico representation of the
metabolic network of Escherichia coli, we examine the role of
contingency by repeatedly simulating the successive loss of genes
while controlling for the environment. The minimal networks
that result are variable in both gene content and number.
Partially different metabolisms can thus evolve owing to con-
tingency alone. The simulation outcomes do preserve a core
metabolism, however, which is over-represented in strict intra-
cellular bacteria. Moreover, differences between minimal net-
works based on lifestyle are predictable: by simulating their
respective environmental conditions, we can model evolution of
the gene content in Buchnera aphidicola and Wigglesworthia
glossinidia with over 80% accuracy. We conclude that, at least for
the particular cases considered here, gene content of an organism
can be predicted with knowledge of its distant ancestors and its
current lifestyle.
Naturally evolved, nearly minimal gene sets in closely related

intracellular symbionts contain substantial differences2. The diversity
of these evolved minimal gene sets may be the product of three
fundamental processes: differences in initial genetic makeup; vari-
ation in selective forces within host cells; and differences in the order
of gene deletions, resulting in a choice between alternative cellular
pathways2. By modelling the reductive evolution of a detailed
metabolic network, we first explore the evolutionary significance of
the last of these alternatives.
Using the metabolic network of Escherichia coli K12 (ref. 3) as our

model system has several advantages. First, the best evidence for the
presence of alternative pathways within and across species comes
from studies of metabolic networks4. Second, flux balance analysis
provides a rigorous modelling framework for studying the impact of
gene deletions4,5; themethod relies on optimizing the steady-state use
of the metabolic network to produce biomass components. Third,
not only is the metabolic network of E. coli K12 one of the best
studied cellular subsystems, but this organism is also a close relative
of several endosymbiotic organisms6, including Buchnera aphidicola
andWigglesworthia glossinidia. Cellular domestication has resulted in
the elimination of 70–75% of the ancestral genome in these latter
organisms7.
The previously reconstructedmetabolic network of E. coli3 consists

of 904 genes and 931 unique biochemical reactions, and incorporates
external nutrients and the corresponding transport processes. The
composition of a ‘minimal reaction set’ has been previously shown to

depend strongly on the given environmental conditions8. Gradual
evolution towards minimal genomes and the role of chance in this
process, however, have remained unexplored. The smallest sets of
genes that are compatible with cellular life will relate to the most
favourable conditions, in whichmost nutrients are available from the
environment. This situation is approximated by organisms with a
strict intracellular lifestyle, where the host provides most of their
nutrients2. Accordingly, we first characterized the simulated evolu-
tion of the network under nutrient-rich conditions (Supplementary
Tables 1–3).
To explore systematically the combinatorial set of minimal meta-

bolic reaction sets, we elaborated a simple algorithm for simulating
gradual loss of metabolic enzymes. We remove a randomly chosen
gene from the network and calculate the impact of this deletion on
the production rate of biomass components (a proxy for fitness). If
this rate is nearly unaffected, the deletion is assumed to be viable and
the enzyme is considered to be permanently lost; otherwise, the gene
is restored to the network. This procedure is repeated until no further
enzymes can be deleted; that is, all remaining genes are essential for
survival of the cell. This simulationwas repeated 500 times, with each
run providing an independent evolutionary outcome.
The resulting networks share on average 77% of their reactions,

whereas only 25% would be shared by randomly deleting the same
number of genes (Fig. 1a). This suggests that both selective con-
straints and historical contingencies influence the reductive evolu-
tion of metabolic networks. Owing to alternative metabolic pathways
in the original E. coli network, numerous functionally equivalent
minimal networks are possible, even under identical selective con-
ditions. For the same reason, only 55% of the reactions are recover-
able by single-gene deletion studies (Fig. 1b). The number of genes in
the minimal networks is also variable (Fig. 1b), suggesting that there
are differences in the number of enzymatic steps between alternative
pathways. Deletions at the early stages of genome reduction may
affect large genomic regions rather than single genes9. However,
additional simulations showed that, although allowing such block
deletions reduces the number of independent gene-loss events, it has
no effect on the size and average similarity of the networks evolved
(Supplementary Methods and Supplementary Table 4).
To compare our predictions against real evolutionary outcomes,

we divided the E. coli enzymes into two mutually exclusive groups:
enzymes ubiquitously present in the simulated minimal reaction sets
(group A), and enzymes absent in some or all of the simulated sets
(group B). If our analysis can approximate reductive evolution in
other bacteria, we expect systematic differences in the relative
frequencies of these enzymes between species with different lifestyles.
As expected, the fraction of enzymes with ubiquitous presence in
the simulated minimal reaction sets (group A) is especially high in
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intracellular parasites and endosymbionts as compared with free-
living microbes (Fig. 1c).
To investigate further how accurately the model describes reduc-

tive evolution in nature, we focused our simulations on three fully
sequenced genomes of B. aphidicola strains10–12 and W. glossinidia13.
These are close relatives of E. coli with an evolved intracellular

endosymbiotic lifestyle. Gene acquisitionmust have been a negligible
factor in the evolution of these lineages (Supplementary Methods),
providing a unique opportunity to study reductive evolution. Setting
boundary conditions that mimic the relevant nutrient conditions
and selective forces (Supplementary Tables 2 and 3), we performed
simulations as described above.
Detailed physiological studies have shown that Buchnera supply

their aphid hosts with riboflavin14 and essential amino acids15 that are
lacking in their hosts’ diets. To quantify the agreement between our
predictions and the observed reductive evolution in Buchnera, while
considering gene-content variation in simulated minimal genomes,
we used a combined measure of sensitivity and specificity16. For each
possible cutoff (that is, theminimal fraction of simulated genomes in
which a gene must be present to predict its presence in Buchnera),
Fig. 2a shows the fraction of true-positive predictions (sensitivity)
plotted against the fraction of false-positive predictions (1–specificity).
The area under the resulting curve gives a cutoff-independent
measure of predictive accuracy16. For each of the Buchnera strains,
the accuracy of the model is ,80% as compared with the 50%
expected by chance (Fig. 2a). The above results remain valid when
genes putatively transferred horizontally into E. coli since its split

Figure 1 | General properties of evolved minimal networks. a, Distribution
of the fraction of shared metabolic reactions between all possible pairs
among 500 simulated minimal networks. Only reactions with annotated
enzyme-encoding genes are shown. The resulting networks share 77 ^ 4.4%
(mean ^ s.d.) of their reactions. The 500 networks were generated with
random reaction content and the same distribution reaction numbers as the
simulants. The average similarity across networks is 25 ^ 2.7%.
b, Distribution of the number of contributing genes in simulated minimal
networks. Minimal reaction networks contain, on average, 245 ^ 6.48
reactions (mean ^ s.d.); however, only 134 of these genes (,55%) have a
predicted fitness effect in the full original E. coli network (arrow).
c, Distribution of genes consistently present in minimal networks in
organisms with different lifestyles (Supplementary Table 11). Putative
orthologues of E. coli enzymes were identified in 140 bacterial species.
Shown is the fraction of these that are retained in all simulated minimal
networks, summarized across species for each of four different lifestyles
(values are the mean ^ 2 s.e.m.). Analysis of variance: n ¼ 140, F ¼ 62.9,
d.f. ¼ 3, P , 1026.

Figure 2 | Comparison of reaction content of simulated and Buchnera
metabolic networks. a, Predictive accuracy for all possible cutoffs (receiver
operating characteristic curve)16. Bp: B. aphidicola, endosymbiont of
Baizongia pistaciae; Sg: B. aphidicola, endosymbiont of Schizaphis
graminum; Ap: B. aphidicola, endosymbiont of Acyrthosiphon pisum.
Overall accuracy (area under curve): Bp ¼ 0.802, Ap ¼ 0.794, Sg ¼ 0.800.
All results are highly significant, P , 10225 (see Supplementary
Information). b, Presence or absence of reactions inBuchnera aphidicola Bp,
averaged over genes within defined ranges of presence or absence in the
simulated minimal reaction sets. Error bars indicate 95% confidence
intervals. x2-test: n ¼ 874, x2 ¼ 222.6, d.f. ¼ 4, P , 10246. For results on
Wigglesworthia glossinidia, see Supplementary Fig. 2.
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from the Buchnera lineage are excluded from the analysis (Supplemen-
tary Methods and Supplementary Table 5). The model also accurately
predicts several non-obvious features of Buchnera genomes: for
example, the retention of particular reactions involved in oxidative
phosphorylation and in pyruvate metabolism (Supplementary
Table 6).
Consistent with the notion that genes vary widely in their

propensity to be lost during reductive evolution, we find a strong
correlation between the frequency of a reaction’s presence in the
simulated reduced networks and its retention in Buchnera (Fig. 2b).
Metabolic pathways differ widely in their variability across simulated
minimal sets (Supplementary Table 7). For example, it seems that
there is only one way of producing some key cellular (biomass)
components, including compounds for cell wall synthesis and some
essential amino acids. By contrast, reactions involved in pyruvate
metabolism, nucleotide salvage pathways or transport processes vary
in their retention across simulations. For example, there are two
distinct pathways by which E. coli can activate acetate to acetyl-
coenzyme A (ref. 17). These two pathways have been shown experi-
mentally to compensate for deletions in each other in E. coli17, at least
under some nutritional conditions. Consistent with this observation,
the simulated minimal reaction sets always contain only one of the
two pathways; accordingly, Buchnera strains have retained only one
of the two pathways (Supplementary Table 8).
The above analysis relied on detailed knowledge of the lifestyle of

Buchnera. Is it possible to predict gene content of an organism
with much less information on lifestyle? Wigglesworthia, another
endosymbiont and close relative of E. coli, is an obvious choice.
Wigglesworthia provides some cofactors and vitamins for its host, the
tsetse fly18. On the basis of the available physiological information19,
it is possible to model the evolution of the metabolic network of
this organism with nearly 76% accuracy for the reaction content
(Supplementary Fig. 2 and Table 3). It is likely that the available
experiments underestimate the number of cofactors produced by
the endosymbiont. We thus elaborated a systematic protocol to find
the most likely set of cofactors synthesized by Wigglesworthia
(Supplementary Methods). Based on the idea of greedy algorithms20,
the protocol iteratively adds biosynthetic components that must be
produced for the host and calculates the impact on the accuracy of
predicting the real reaction content ofWigglesworthia. In each round,
the cofactor resulting in the best prediction is kept and a new round
of simulations is started, adding again each of the remaining
compounds one at a time (Supplementary Methods). The method
substantially increases model accuracy up to 84% (Supplementary
Table 5). It also results in a series of non-trivial predictions on the
metabolic capability ofWigglesworthia. For example, it suggests that
this organism retained the ability to synthesize not only protohaem,
but also another related cofactor, haemO (SupplementaryMethods).
Under a given selection pressure, simulated minimal reactions sets

share 82% (Wigglesworthia) and 88% (Buchnera) of their reactions,
respectively. This value drops to 65% when minimal gene sets across
different models are compared. This suggests that variability in gene
content among species reflects both variation in selection pressures
and chance events in the evolutionary history of the endosymbionts
(Supplementary Table 9).
Each loss of a reaction reduces the space available for further

reductive evolution. This is most obvious for physiologically fully
coupled reactions (such as those in linear pathways), which can only
fulfil their metabolic function together21. As predicted, members of
pairs are either lost or retained together in the investigated endo-
symbionts in 74–84% of cases, whereas only ,50–55% would be
expected by chance (Supplementary Table 10).
Deviations between the model predictions and gene content of

endosymbionts might be due to incomplete biochemical knowledge
or inaccuracies in modelling the types and relative amounts of
nutrient conditions and biosynthetic components required by the
endosymbiont or the host cell. Finally, hosts and endosymbionts

interact in ways that are not completely understood, and biomass
production may be only a rough proxy for endosymbiont fitness.
These caveats aside, our approachmight be considered a step towards
a predictive theory of gene-content evolution. Complementary to
traditional approaches, in which lifestyle is inferred from genomic
data, it seems possible to take an organism’s ecology and to predict
which genes it should have by in silico network analysis. Moreover, we
find that evolutionary paths are contingent on prior gene deletion
events, resulting in networks that generally do not represent the most
economical solution in terms of the number of genes retained. Thus,
history and chance seem to have significant roles not only in
adaptive22 but also in reductive evolution of genomes.
These results also have implications for the search for a minimal

genome. By using comparative genomics23,24 and systematic gene
knock-out studies25–27, traditional analyses of minimal gene sets aim
to define a repertoire of genes that is necessary and sufficient to
support cellular life2. The theoretical foundations of the minimal
genome concept have remained, however, largely unexplored. We
have established that the catalogue of essential genes in free-living
species identified by single-gene deletion studies will underestimate
the minimal gene set for metabolic system by about 45% (Fig. 1b).
Such considerations, and the simulation techniques used to reach
these conclusions, should inform attempts by experimentalists to
constructminimal genomes by gradual evolution in the laboratory28,29.

METHODS
For full details on orthologue detection and statistical analyses, see Supplemen-
tary Methods.
Flux balance analysis of theE. colinetwork.A reconstructedmetabolic network
(iJR904 GSM/GPR)3 of E. coli K12 was used in this study. The model consists of
931 unique biochemical reactions (including transport processes) and 904 genes.
The metabolic reconstruction gives accurate information on the stoichiometry
and direction of enzymatic reactions, on the presence of isoenzymes, and on
enzymatic complexes. Details of flux balance analysis of the E. coli metabolic
network have been described elsewhere4,5. In brief, it involves two fundamental
steps: first, specification of mass balance constraints around intracellular
metabolites; and second, maximization of the production of biomass com-
ponents. The assumption of a steady state of metabolite concentrations specifies
a series of linear equations of individual reaction fluxes, which is written in the
form Sv ¼ 0, where S is the mn stoichiometric matrix (m being the number of
metabolites and n being the number of reactions) and v is the vector of
individual fluxes through the network. An individual element Sij gives the
contribution of the j-th reaction tometabolite i. A biomass reaction describes the
relative contribution of metabolites to the cellular biomass. Availability of
nutrients and directions of individual reactions were included as boundary
conditions (Supplementary Tables 1–3). Using the linear programming package
CPLEX 9.0.0, we identified the flux distribution that maximizes the rate of
biomass production.
Simulations on reductive evolution. Following previously elaborated proto-
cols5, we start by investigating the behaviour of the E. coli metabolic network
model under a given environmental condition (Supplementary Tables 1–3).
Next, we remove a randomly chosen enzyme from the network and calculate the
impact of this deletion on the production of biomass components (for a list, see
Supplementary Tables 1–3). Enzyme deletions were simulated by constraining
the flux of the corresponding reactions to zero and calculating the corresponding
knockout flux configuration by established protocols4,5. A gene was classified as
having no fitness effect if the biomass production rate of the knockout strain was
reduced by less than a given cutoff; different cutoffs led to very similar results
(Supplementary Table 5). Deletions of isoenzymes were considered to have no
impact on fitness as long as at least one member remained. By contrast, deletion
of any of the subunits of a protein complex was considered to result in zero flux
through the corresponding reactions. Reactions with no annotated encoding
genes were retained throughout the simulations. If the fitness effect of a
simulated gene deletion was below the cutoff, the deletion was assumed to be
viable and the enzyme was considered to be permanently lost. Otherwise, the
gene was restored to the network. The procedure was repeated until no further
enzymes could be deleted. This simulation was repeated 500 times; each run
provided an independent evolutionary outcome.

The simulations that mimic the evolution of the Buchnerametabolic network
relied on available biochemical evidence suggesting that glucose and glutamate
are the principal carbon sources fromwhich essential amino acids and riboflavin
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must be produced for the host (Supplementary Table 2). Besides amino acids,
mononucleotides and fatty acids, among others, the biomass components that
must be synthesized also include riboflavin. A previous study30 estimated the
population size of Buchnera as Ne < 102–103. Gene deletions are effectively
neutral and can thus spread through a population if jNe sj , 1, where s is the
selective effect of the gene deletion. Accordingly, the cutoff for the fitness effect of
simulated gene deletions was set to 1022. A less stringent cutoff (0.1) gave very
similar results (Supplementary Table 6). For details ofWigglesworthia uptake and
selective conditions, see Supplementary Table 3.
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