
Molecular chaperones as regulatory elements of cellular
networks
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Molecular chaperones help hundreds of signaling molecules to

keep their activation-competent state, and regulate various

signaling processes ranging from signaling at the plasma

membrane to transcription. Besides these specific regulatory

roles, recent studies have revealed that chaperones act as

genetic buffers stabilizing the phenotypes of various cells and

organisms. This may be related to their low affinity for the

proteins they interact with, which means that they represent

weak links in protein networks. Chaperones may uncouple

protein, signaling, membrane, organelle and transcriptional

networks during stress, which gives the cell additional

protection. The same networks are preferentially remodeled in

various diseases and aging, which may help us to design novel

therapeutic and anti-aging strategies.
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Introduction
The term ‘molecular chaperone’ denotes a large family of

abundant, ubiquitous proteins that form an ancient

defense system in our cells. Chaperones promote cell

survival by sequestering damaged proteins and prevent-

ing their aggregation. During stressful conditions, such as

elevated temperature, they prevent protein aggregation

by facilitating the refolding or elimination of misfolded

proteins. The stress-induced response to damaged

proteins is helped by a sophisticated regulatory system,

which shuts down most cellular functions and, in parallel,

induces the synthesis of several chaperones and other

survival-promoting proteins. Therefore, many of the cha-
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perones are also called stress or ‘heat shock’ proteins in

reference to the archetype of cellular stress, heat shock.

Besides their role during stress, chaperones have multiple

roles under normal conditions. They promote the trans-

port of macromolecules (e.g. proteins or RNA) and parti-

cipate in almost every remodeling event involving larger

protein complexes, including signaling, transcription, cell

division, migration, differentiation, etc [1–3]. The multi-

ple roles of chaperones have inflated the term, which is

now used to describe almost any protein (or RNA) that

transiently accompanies other molecules and promotes

their transport or assembly to larger complexes. Thus

chaperones for RNAs, copper and lipids have also been

described. Certain chaperones are specialized to a single

protein or to a small class of proteins, like the chaperones

of catenin, collagen, the major histocompatibility com-

plex, myosin and others. The term ‘intramolecular cha-

perone’ has been coined for protein segments (usually

residing in the N terminus) that help the folding of the

rest of the protein. Moreover, small compounds can be

termed ‘chemical chaperones’, and are used in clinical

practice to cure protein folding diseases. Space limitations

restrict this review to the ‘original’ chaperones: those

protein chaperones that have multiple protein substrates.

Chaperones mostly form low-affinity, dynamic, temporary

interactions (weak links) in cellular networks. Given that

chaperones generally have a large number of partners, they

behave like hubs in protein–protein interaction networks.

Moreover, many chaperone effects (e.g. cell survival or

changes in the phenotype diversity) are typical integrative

properties, which can rarely be understood by studying the

individual chaperone–client interactions exclusively.

Thus the network approach is a promising tool to explain

some key aspects of chaperone function [3,4��,5�,6�]. We

will highlight several potential connections between the

individual chaperone–protein contacts and cellular net-

works, and will explain how some aspects of the network

approach can be used to understand the integrative proper-

ties of chaperone-mediated regulation. Finally, we will

show how the network approach is linked to chaperone-

related therapeutic and anti-aging strategies.

Chaperones and cellular networks
Chaperones form large complexes and have a large num-

ber of co-chaperones to regulate their activity, binding

properties and function [1–3]. These chaperone com-

plexes regulate local protein networks, such as the mito-

chondrial protein transport apparatus [7] and the

assembly [8] and substrate specificity [9�] of the major

cytoplasmic proteolytical system, the proteasome.
www.sciencedirect.com
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Chaperones and the signaling, membrane and

organelle networks

The major chaperone-regulated cellular networks are

related to signaling, membrane structure and transcrip-

tion. Though the network approach has been worked out

only for segments of the whole signaling network or

‘signalome’ [10], chaperones may be important elements

in the promotion of cross-talk between various signaling

processes. The Hsp90 chaperone complex promotes the

maturation of >100 kinase substrates including several

members of the Raf-1-related signaling pathway. The

antiapoptotic protein Bag1 (Bcl-2-associated athanogene

protein 1) activates this pathway. Under stress, Bag1 is

associated with another chaperone, Hsp70 (70-kDa heat

shock protein), which leads to the attenuation of Bag1-

mediated Raf-1 activation (Figure 1). Thus, the Bag1/

Raf-1 interaction may contribute to the mechanism

underpinning how stress shuts down cell proliferation

[11].

Another well-known chaperone-mediated signaling path-

way, the activation of nitric oxide synthases, gives us an

example of chaperone effects on various membranes. The

endothelial nitric oxide synthase (eNOS) is activated if
Figure 1
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assembled to a raft-associated complex containing Hsp90

(90-kDa heat shock protein), the Akt kinase (protein

kinase B) and calmodulin. The formation of this complex

is helped by statins, the widely used anti-atherosclerotic

drugs [12]. A co-chaperone of Hsp70 and Hsp90, CHIP

(carboxyl terminus of Hsc70-interacting protein), re-

directs the maturating eNOS, which usually follows a

Golgi-to-plasma-membrane route, into an insoluble cel-

lular compartment, leading to its inactivation [13]. Both

Hsp90 and Hsp70 are raft-associated chaperones [14].

Besides its role in eNOS trafficking, Hsp90 helps the

GTP-binding protein Ga12 to associate with membrane

rafts [15] and promotes the traffic of STAT3 (signal

transducer and activator of transcription protein 3) from

membrane rafts to the cell nucleus after interleukin-6

stimulation [16] (Figure 1). Rab3A, a key player in Ca-

dependent exocytosis, is also regulated by the Hsp90/

Hsp70/cysteine string protein chaperone complex in

synaptic membranes [17]. Finally, studies of Vı́gh et al.
showed that chaperones may have a general role in

membrane stabilization [18]. All these examples link

chaperones to the membrane network of the cell, which

integrates the plasma membrane, the endoplasmic reti-

culum (ER), various vesicles, the nuclear membrane and
Nucleus
IL-6
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mitochondria [19–21]. Moreover, chaperones may facil-

itate cytoplasmic traffic [3,22–25]. Links between the ER,

the mitochondria and the cytoplasm have already been

shown to signal messages of cellular stress between these

compartments [26–28]. Chaperones may emerge as sta-

bilizers and regulators of the connectivity and traffic of

these important networks.

The connections between elements of the mitochondrial

network, the ER, nuclear membranes and the cytoplas-

mic meshwork may be key points of cellular integrity and

information transfer, while de-coupling of these segments

may be an efficient protection against any cellular

damage. One might expect that chaperones are needed

for an efficient coupling of these cellular networks. De-

coupling of network elements and modules is a widely

used method to stop the propagation of damage [4��,6�].
In case of stress, the increased occupancy of chaperones
Figure 2
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by damaged proteins together with the stress-induced

translocation of chaperones to the nucleus [1–3,29] might

lead to an ‘automatic’ de-coupling of network elements

and modules, providing the cell periphery with an addi-

tional safety measure (Figure 2).

Chaperones and the transcriptional network

Chaperones are well known to protect the cell nucleus

after stress. As a novel version of this role, Hsp70 was

shown to drive damaged nuclear proteins to the nucleo-

lus, clearing other nuclear components of misfolded pro-

teins and decreasing the danger of their widespread

aggregation [29]. In agreement with these findings, cha-

perones promote the transport of ribosomal subunits [30]

and the mobility of steroid receptors inside the nucleus

[31]. Molecular chaperones regulate both the activation

[32–34] and the disassembly of numerous transcriptional

complexes [35,36] (Figure 1). Thus, chaperones emerge
Current Opinion in Cell Biology
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as regulators of the transcriptional network [37]. Stress-

induced nuclear translocation of chaperones may preserve

nuclear remodeling capacity during environmental

damage, and thus protect the integrity of DNA.

Emergent properties of the chaperone-
regulated cellular networks
The previous examples showed that chaperones are

involved in the regulation of signaling, organelle,

membrane, cytoskeletal and transcriptional networks

(Figure 2). However, relatively little is known about

the chaperone-mediated, emergent properties of cellular

functions. One of the most important advances in this area

came from Susan Lindquist and her co-workers when

they discovered that Hsp90 acts as a buffer of genetic

changes in Drosophila [38] and in Arabidopsis [39]. A

recent paper suggests that this effect might originate

epigenetically from Hsp90-induced heritable changes

in the chromatin structure [40�].

Chaperone overload

Chaperone-induced genetic buffering is diminished dur-

ing stress, which causes the sudden appearance of the

phenotype of previously hidden mutations, thereby pro-

moting population survival by providing a possible mole-

cular mechanism for fast evolutionary changes [38,39]. On

the other hand, the stress-induced appearance of genetic

variation at the level of the phenotype cleanses the

genome of the population by allowing the disappearance

of disadvantageous mutations by natural selection. Cha-

perones are highly conserved proteins [1–3], so similar

mechanisms might operate in humans. Moreover, the

tremendous advance of medicine in the last two hundred

years has significantly reduced the effects of natural

selection and potentially increased the accumulation of

hidden mutations in the human genome. However, cha-

perones may become occupied by the damaged proteins

in aged organisms (half of cellular proteins of 70–80 years

old humans may be already oxidized), resulting in a

chaperone overload. As a consequence the protein pro-

ducts harboring the ‘hidden mutations’ may be released

and may contribute to the development of civilization

diseases, such as cancer, atherosclerosis and diabetes [41–

43]. This effect may be negligible today, although it will

increase with each generation. Still, we probably have

many hundreds of years to think about a possible solution.

Chaperones as weak links

Recent findings [44�,45�] raised the idea that not only

chaperones but a large number of other proteins may also

regulate the phenotypic diversity of the population.

Though a relatively small number of other regulators

have been uncovered so far, it seems unlikely that a

common molecular mechanism, such as involvement in

signaling or in modifications to the chromatin structure,

can explain all the effects observed. If a general explana-

tion is sought, it is more likely to be related to the network
www.sciencedirect.com
properties of the cell. In this context, chaperones are

typical weak linkers, providing low-affinity, low-probabil-

ity contacts with other proteins (Figure 2). Weak links are

known to promote system stability in a large variety of

networks from macromolecules to social networks and

ecosystems, which suggests that this may be a general

network-level phenomenon explaining many of the

genetic buffering effects of chaperones [6�].

Chaperone therapies

Cellular networks are remodeled under stress [46] and in

various diseases. Effective interventions to push the

equilibrium towards the original state may not be limited

to single-target drugs with a well-designed, high affinity

interaction with one of the cellular proteins. In agreement

with this general assumption, several examples show that

multi-target therapy may be superior to the usual single-

target approach [47]. The best known examples of multi-

target drugs include Aspirin, Metformin or Gleevec as

well as combinatorial therapy and natural remedies.

Because of the multiple regulatory roles of chaperones,

chaperone modulators provide additional examples of

multi-target drugs. Indeed, chaperone substitution (in

the form of chemical chaperones [48]), the pharmacolo-

gical help of chaperone induction by stress, termed cha-

perone co-induction [49�], and chaperone inhibition [50�]
are all promising therapeutic strategies. Both chaperone

co-inducers and chaperone inhibitors, including geldana-

mycin analogues and other Hsp90 inhibitors, have

recently completed successful clinical trials.

Conclusions
Chaperones regulate cellular functions at two levels. In

several cases they interact with a specific target protein

and help it to fold after synthesis, or re-fold after stress.

These strong interactions make chaperones important

parts of the central scaffold of cellular networks, such

as the protein net, the signaling network, the membrane

and organelle network and the transcriptional network.

However, in most cases chaperones have only a low-

affinity, temporary, weak interaction with most of their

targets (Figure 2). Changes to these interactions do not

affect the general behavior of the whole network, the cell.

However, inhibition of these weak interactions might

lead to a rise in cellular noise and the destabilization

and disintegration of the whole network and by promot-

ing an ‘error catastrophe’ help us to combat cancer [50�].
In contrast, chaperone activation might decrease cellular

noise, and consequent cell-stabilization might give an

additional, indirect help to prevent protein folding dis-

eases including various forms of neurodegeneration, such

as amyotrophic lateral sclerosis, Alzheimer’s disease,

Parkinson’s disease and Huntington’s disease [48,49�].
Besides slowing or reversing the development these

diseases, chaperone-based therapies may also generally

benefit the aging organism by stabilizing its cells and

functions. Thus properly working chaperones may be key
Current Opinion in Cell Biology 2005, 17:210–215
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players to help us achieve improved life conditions at an

advanced age. The assessment of the multiple roles of

chaperones in the context of cellular networks is just

beginning.

Update
Recently a promising model was developed to integrate

various chaperone-dependent and other elements in the

signaling network leading to the activation of heat shock

factor-1 and the consequent synthesis of molecular cha-

perones [51]. Hsp90 was shown to act as a molecular

switch of the Erb-B2 oncogenic tyrosine kinase signaling

network by regulating the heterodimer formation

between Erb-B2 and various other kinases [52]. This

extends the membrane-dependent remodeling effects

of Hsp90 to a novel field. As a theoretical contribution

to chaperone therapies, the efficiency of multi-target

drugs over single target drugs has been summarized,

and a new drug-design paradigm was proposed in a recent

publication [53].
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