
3 Network Stability

Stability resembles intelligence: easy to imagine and hard to define.
Here I will assess network stability at three different levels. First I will
describe network perturbations and the concept of local dissipation
and global connections. Later a number of different scenarios will be
shown, where the perturbation is big or persistent enough to change
the stability of the underlying bottom networks, and therefore, the
structure of the current network is not preserved. Then stability rela-
tionships between the bottom and top networks will be discussed using
the example of synchrony. Finally, I will describe the two basic design
alternatives: evolution and engineering. Both of them respond to the
same question, as does the whole chapter: How can we make a network
stable?1

If a network has violently changing properties, it is most probably
not very stable. How can we measure stability, if a network remains
unchanged? The assessment of stability often requires a test, and this
test comes in the form of a perturbation to the network. A stable
network should try to restore its original status after a perturbation.
However, this is not easy. Most networks are open systems and there-
fore undergo a continuous series of perturbations. In the next section,
I will give a survey of such perturbations.

3.1 Perturbations. Good and Bad Noise

Perturbations are often regarded as noise. What is the difference? Noise
is usually understood from the point of the experimenter. If we measure
it from the outside, noise is the fluctuation of the value we measure.
However, from the point of view of the network, noise is a series of
perturbations changing its original status. Network perturbations can
be called either signals or noise. This dissection is rather artificial and

1If you need a definition of stability, let me encourage you to jump to Sect. 4.3.
But please come back again!
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Fig. 3.1. The understanding of signals depends on the structure of the re-
ceiving network

shows our anthropocentric view of the world around us. What is ‘good’
or ‘purposeful is called a signal, and what is disturbing, undesirable,
residual, is called noise.

However, there may be a better way to discriminate between sig-
nal and noise. Perturbations which often reach the network and are
large enough to disturb the network structure completely, unless the
network develops a specific response, provoke a ‘learned, adaptive re-
sponse’. The same adaptive response may arise after perturbations
which bring information about important conditions like food or dan-
ger, which were experienced by the network in the past to affect the
network’s integrity in the long run.2 These perturbations often lead
to an unexpectedly large response, which is not proportional to the
magnitude of the perturbation, but has been built in to the structure
of the responding network as an adaptive response. We usually call
these perturbations signals. Other perturbations which are too small,
irregular or unimportant to stimulate a learned, adaptive response of
the network, are called noise. “I get it. When a nice girl enters the classroom, she
is a signal for my network. When the geography teacher comes in, he is noise.” Spite,
I will show later that a better understanding towards the geography
teacher is a key point for the stability of your social network. However,
your example shows that the understanding of signals depends on the
structure of the receiving network. This is the reason why I will neglect
the myriad of network-dependent signals here, and I will restrict my-

2Preservation of network integrity – or more properly the giant component of
the network, network percolation – is necessary for the survival of the organism
built by the network. I will describe this network resilience in detail in Sect. 4.3.
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self to a description of the perturbation, which is characteristic of all
networks: noise. Resistance to noise is an important feature of network
stability.

Intrinsic and extrinsic noise. Various parts of the network,
like modules, motifs or elements may cause noise to another network segment.
This is called intrinsic noise as opposed to extrinsic noise, which comes from
the environment of the network (Swain et al., 2002). In the Internet and
the microchip, intrinsic noise can be 100 times greater than extrinsic noise.
In contrast, in many other systems the levels of the two types of noise are
rather similar (Argollo de Menezes and Barabasi, 2004). In gene networks
the intrinsic noise of gene expression comes from the low copy number of
messenger RNA. An additional component of noise is the transmitted noise
from upstream genes and the global, extrinsic noise, which is correlated with
the transmitted noise. Here, the total noise of a gene transcription set was
found to be dominated by extrinsic fluctuations, and was therefore a function
of network interactions (Pedraza and van Oudenaarden, 2005).

Noises are colorful animals. We have white, pink and brown noise to
name but a few. White noise is related to fully random fluctuations
showing no correlation in time. Brown noise got the name from Brow-
nian motion, since it is typically present in diffusion processes showing
no correlation between increments. In contrast, pink noise (which is
also called flicker noise, crackling noise, or in a special case 1/f , 1/t
or 1/τ noise) has a memory of past events on all time scales, i.e., it
is correlated. 1/f noise obeys scale-free statistics, meaning that an
event that is an order of magnitude larger may always have a non-zero
probability of occurrence, but that this probability is exactly an order
of magnitude smaller. For a more detailed description of the various
types of noise, see the remark below.

A short course on noise. What is the difference between
white, pink and brown noise? Scale-freeness is back again. To understand,
how noise is related to scale-freeness, we have to do some mathematics again.
Noise is usually characterized by a mathematical trick. The seemingly ran-
dom fluctuation of the signal is regarded as a sum of sinusoidal waves. The
components of the million waves giving the final noise structure are charac-
terized by their frequency. To describe noise, we plot the contribution (called
spectral density) of the various waves we use to model the noise as a function
of their frequency. This transformation is called a Fourier transformation,
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Fig. 3.2. The noise spectrum. Various types of noise (white, brown and pink)
are characterized as a sum of sinusoidal waves. This schematic graph shows
the contribution of these waves as a function of their frequency. Shaded areas
around the curve for pink noise are intended to illustrate that pink noise
denotes a wide range of noise distributions

and defined by the integral

f(ω) =
∫ +∞
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f(t)e−iωtdt =

∫ +∞

−∞
f(t)

[
cos(ωt) − i sin(ωt)

]
dt ,

where ω is the frequency and t the time. At the end of this transformation,
we receive a distribution of the constituent waves (see Fig. 3.2). Why do we
have this complicated mathematics? Part of it is tradition. Noise was first
extensively studied in electric amplifiers, and spectral density and frequency
were therefore easy choices, since they were the most important properties
characterizing the thermionic tube amplifiers (Johnson, 1925). However, this
rather complicated representation has proved to be very useful to discriminate
between various types of noise.

• Scale-free behavior. The contribution of the sinusoidal waves used to
compose the noise (the spectral density of the noise) displays the very
same scale-free behavior we already observed in the distribution of vari-
ous network features.3 The spectral density of the noise obeys the equa-
tion P = cD−α. Note that this is the same equation we encountered in
Sect. 2.2, where P is now the spectral density of the noise, c a constant,
D the frequency, and α a scaling exponent. The values of α can vary be-
tween zero and (usually) two. If α is zero, we talk about white noise; if

3Just as a reminder, our current scale-free list consists of degree distribution,
fractal behavior, event probability, and link-weight distribution (see Sects. 2.2 and
2.4).
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α is two, we have brown noise; and anything in-between corresponds to
pink noise. In some cases we have noise with α larger than two. This is
called black noise.

• White noise. White noise (when α is zero) has an equal contribution
from each wave throughout the whole spectrum. In other words, white
noise implies that the value has fully random fluctuations with no corre-
lation in time. White noise has no memory, e.g., it is a Markov process.4

Compared to other types of noise, white noise shows a strong dependence
on short time scale events. This means that high frequencies – short time
scales – contribute equally to the final noise structure with short frequen-
cies. This is not true for any other type of noise. There, short time scales
give smaller and smaller contributions as we go from pink noise to brown
and black noise.

• Brown noise. Brown noise (when α is two) is also called Brownian noise,
since it resembles a diffusion process with no correlation between incre-
ments. However, brown noise is ‘better’ than white noise, since it ‘remem-
bers’ the position immediately before the last time step. Here the starting
point is defined, but the endpoint of the given step is random. Compared
to other types of noise, brown noise shows a strong dependence on long
time scale events. This means that small frequencies – long time scales –
give a much greater contribution to the final noise structure than in either
white or pink noise.

• Brown and white noise are related. Brownian motion can be consid-
ered as an integral of a white noise process. In other words, if a particle
undergoes diffusion (Brownian motion), its position has brown noise, while
its velocity shows white noise, in agreement with the above notion that
the next position is selected in a random process.

• Pink noise. Pink noise (when α lies between zero and two) is the most
exciting of all, and therefore, has many other names. It is also called
colored noise, flicker noise, crackling noise, Barkhausen noise, 1/f , 1/t or
1/τ noise. The latter three names refer to the situation when α is exactly
unity, and the spectral intensity is inversely proportional to the frequency
in the equation above. In pink noise, the contribution of low-frequency
waves is higher than in white noise. This means that rare events have a
greater effect on the noise than frequent events. This is the reason why
we call this noise pink. Its spectrum is biased towards the low frequencies,
which correspond to red light in the spectral analogy with visible light.
The spectrum of pink noise is therefore ‘reddened’ compared to white
noise, i.e., it is pink. Pink noise contains disturbances equally on all time
scales, i.e., pink noise is scale-free. In other words, if we speak about
a pink-noise process, fluctuations happening once a minute and once a
century have the same influence on the present. Pink noise has a memory

4In a Markov process, the distribution of future states depends only on the
present state and not on how it arrived in the present state.
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of past events on all time scales (Halley, 1996; Milotti, 2002; Sethna et
al., 2001).

Pink noise is encountered in a wide variety of systems, such as quasar
emissions, solar flares, protein dynamics, human cognition, electronic
devices, traffic flow, group decision-making, and economics to name
but a few, and is suggested to be a characteristic feature of system
complexity (Gilden et al, 1995; Gisiger, 2001; Halley, 1996; Lu and
Hamilton, 1991; Milotti, 2002; Sethna et al., 2001). However, there are
examples of pink noise closer to everyday life. The crackling noise we
hear when we crumple a piece of paper also has the structure of pink
noise. Additional examples of pink noise will be listed when we consider
a specific case of its occurrence, viz., self-organized criticality, in the
next section (Bak et al., 1987; Bak, 1996). Let me note here, however,
that some of my former examples of scale-freeness in Sect. 2.2, like
music, were also various forms of pink noise.

Noise is bad for the network, if high and continuous noise levels
disturb all network functions. So far, the take-home message is that
we have to stop noise in order to survive. This assumption is wrong.
Reducing the noise to zero would mean no interaction of the network
with the environment. Isolation is clearly a bad strategy, since such
an isolated network will die. However, zero noise is bad for another
reason too. Noise can be helpful in many ways. The first documented
observations of good noise were sailors’ reports on the peculiar phe-
nomenon that disordered raindrops falling on the ocean can calm rough
seas (Reynolds, 1900). Another example of the optimal level of noise is
opinion formation. A low noise is not enough for modulation of opin-
ion formation, while strong fluctuations prevent the formation of a
definitive collective opinion (Kuperman and Zanette, 2001).

A special case of good noise is stochastic resonance (Benzi et al.,
1981; Paulsson et al., 2000).5 Stochastic resonance occurs when the
signal-to-noise ratio of a nonlinear device is maximized for a moder-
ate value of noise intensity. The term ‘resonance’ in the expression
‘stochastic resonance’ reflects the fact that the weak signal is often a
periodic signal. Moreover, a bistable system can be treated as an os-
cillator, where the rate of switching events gives the typical frequency,

5Stochastic resonance has a conceptual resemblance with stochastic focusing.
In the case of stochastic focusing, the ‘helpful’ noise is mostly intrinsic, while in
the case of stochastic resonance, it comes mostly from the environment (Paulsson
et al., 2000). Since intrinsic and extrinsic noise are often difficult to discriminate, I
will use the term stochastic resonance to describe both phenomena throughout the
text.
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Fig. 3.3. The signal usually has to exceed a threshold to trigger an effect
from the adapted network

or eigenfrequency, of the system. This periodic or quasi-periodic sig-
nal can be in resonance with the noise, when the eigenfrequency of
the nonlinear oscillator and the frequency of the input noise match. A
typical case of stochastic resonance occurs in biological systems, when
the noise is added to a subthreshold signal and brings it above the
threshold, i.e., makes it detectable (see Fig. 3.4). Here, for low noise,
the signal will not pass the threshold, and the signal-to-noise ratio
is therefore low, due to the undetectable signal. For large noise, the
output is dominated by the noise, which leads to a low signal-to-noise
ratio again. For moderate intensities, the noise allows the signal to
reach threshold, but the noise intensity is not so large as to dominate
the output. Hence, a plot of signal-to-noise ratio as a function of noise
intensity has a maximum. Pink noise is especially good at helping sig-
nals to exceed a threshold, since it is long-range correlated and has a
greater chance of satisfying the resonance condition above (Soma et
al, 2003).

Stochastic resonance has been invoked to explain climate fluctua-
tions, the sensitivity of fish, cricket, rat mechanoreceptor cells, and the
sensitive functioning of ion channels (Bezrukov and Vodyanoy, 1995;
Ganopolski and Rahmstorf, 2002; Paulsson et al., 2000; Wiesenfeld and
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Fig. 3.4. The most important good noise: stochastic resonance. Stochastic
resonance is the phenomenon in which a weak signal occasionally exceeds the
otherwise limiting detection threshold with the help of noise. In this highly
schematic illustration, an arbitrary example of this phenomenon is shown

Jaramillo, 1998). Without stochastic resonance, we would not hear well
and most probably would not smell or see well either. Fish find more
food (Russell et al., 1999), bones grow faster (Tanaka et al., 2003),
and even memory retrieval is better (Usher and Feingold, 2000) in the
presence of the appropriate noise. We may conclude that noise can be
good, since noise is needed for all the pleasures of life.

If you want to learn, listen to Mozart, not
Schoenberg. Memory retrieval has been shown to be higher in the presence
of noise (Usher and Feingold, 2000). Various types of music from medieval
songs through Mozart and the Beatles all have pink noise structure (Hsu and
Hsu, 1991; Voss and Clarke, 1975). The combination of these two observa-
tions may explain why many people can learn better if there is music in the
background. But does music always help us to learn? Pink noise is efficient
at inducing stochastic resonance (Soma et al., 2003) which may help learn-
ing better than other noise structures. Schoenberg’s music, and some other
types of modern music do not have a pink noise structure (Hsu and Hsu,
1991; Voss and Clarke, 1975). Moreover, as the difficulty of a task increases,
noise does not help, but disturbs (Usher and Feingold, 2000). This reminds
me, to my great surprise, how my favorite Mozart pieces, which had helped
me through all my chemistry exams, suddenly became a distracting disaster
when I started to learn about Hilbert spaces in mathematics.
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Optimal noise not only helps stochastic resonance, but also develops
diversity in various networks. If identical networks have stochastic res-
onance, the time and probability when they reach the threshold and
start to behave differently will not be the same. Moreover, noise ampli-
fies selection in finite populations, increases fitness and may increase
the chances of robust systems for evolution (Krakauer and Sasaki,
2002).

More reasons for needing noise. The housekeeping
heat of steady-state thermodynamics. Oono and Paniconi (1998) sug-
gested a very helpful thermodynamic description for the steady states of
non-equilibrium systems. A testable prediction of their theory was suggested
(Hatano and Sasa, 2001), and verified later (Trepagnier et al., 2004). A spe-
cial feature of steady-state thermodynamics is housekeeping heat. This house-
keeping heat is defined as the energy preventing non-equilibrium steady states
from shifting to equilibrium. Self-organizing networks suffer various types of
random damage. Therefore, if the network remained static, it would soon
become dysfunctional. Some networks have developed highly specific screen-
ing systems which recognize and repair random damage. On the one hand,
this process requires energy, which arrives in the form of perturbations or
noise. On the other hand, noise-triggered network restructuring will repeat
a few steps of the original self-organization and therefore constitutes a much
cheaper way of providing a continuous repair function, with the additional
advantage that it is always adaptive with respect to the actual environment of
the network. The need for permanent noise for the continuous restructuring
of networks resembles the housekeeping heat in the steady-state thermody-
namics of Oono and Paniconi (1998).

In conclusion, optimal noise is an important condition for network sta-
bility, fitness and survival. To achieve optimal noise, a well-functioning,
stable network should develop noise control. Networks have figured out
many tricks for this. Special arrangements of a few network elements,
called network motifs (Milo et al., 2002), may efficiently decrease noise.
An excellent demonstration of this phenomenon was given by Becskei
and Serrano in 2000, when they showed that, if they put negative feed-
back into a transcriptional system, the transcriptional noise would de-
crease. Network modules also protect against noise, since they restrict
noise propagation. This happens via the weak links which connect
modules and often break if an unusually large perturbation arrives. In
the next three sections, I will show what happens in a network when
noise arrives.
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3.2 Life as a Relaxation Phenomenon:
Dissipate Locally, Connect Globally

When the original status of a network suffers a perturbation, the net-
work usually dissipates the disturbing effect, which means that the
change is distributed over various elements of the network and re-
laxation occurs: the network returns to equilibrium conditions. To get
distributed, the perturbation has to propagate through the links of the
network. Here we have two basic scenarios. The first is when the pertur-
bation can travel undisturbed, and the other, when the perturbation
gets stuck at a given node. What are the chances of a perturbation get-
ting around undisturbed? To find the answer, we must first describe
the playground for this game. What are the possible paths that the
perturbation may select for its round trip? I will discuss the various
options, and whether this round trip goes smoothly or the perturba-
tion is arrested at a given point. I will also explain the need for a dual
action in the connectivity of networks. On the one hand, free travel of
the perturbation has to be confined to a segment of the network caus-
ing a local dissipation. On the other hand, the reason for the existence
of networks is a global communication spanning the entire network.6

Finally, I will describe what happens if the perturbation piles up at
the origin or any other point of the network. In fact, the following
two sections will also elaborate on this latter problem, showing how
perturbation-induced damage gets magnified as conditions worsen.

3.2.1 Confined Relaxation with Global Connection

Bearing in mind the above arguments which show that perturbations
are necessary for the survival of networks, we shall examine how net-
works can survive the excessive damage they may cause from time to
time.

Scene One

To examine how perturbations might get dissipated, we must first ex-
plore all possibilities as to where they may go. One of the most impor-
tant properties of the network is the presence of a giant component. If
a network has a giant component, than most of its elements are con-
nected with each other. This property makes the network a network.

6I am grateful for the instructive title of the paper by Tewari and Toner (2005),
which helped me to generalize this concept.
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When the giant component is dissolved, the network becomes a set of
isolated subgraphs which are not connected to each other and there-
fore cannot communicate. If the network was a living entity like a cell,
animal, plant or human being, and if its giant component disappeared,
the network would die.7 “There is something I do not understand here. Do you get
rid of your favorite networks like this? They can die, period. When do they die? How
can we protect them? I am a network! I want to know how I can survive!” Wow,
Spite, you got quite emotional! Do not worry. The next two sections
will give you many examples of how to save your network.

Let me deal here with the other end. How is the giant component
born? The answer is: abruptly. As the number of links increases in a
network, we eventually reach the percolation threshold and the giant
component appears suddenly.8 Once there is a giant component, per-
turbations may start their trip. And now comes the really important
question: How far can they go?

Scene Two

For the answer to the above question, we will examine the propa-
gation of information in the network: rumors, infections, Pity’s love
letters during your history class, Spite (“Wow, this is creepy. How does he
know about this? Can he read my thoughts?”), etc. The perturbation has to be
dissipated fast. We therefore require efficient connectivity in the seg-
ment of the network that was hit by the perturbation. In other words,
we need small-worldness. Lattice networks will have a hard time if a
perturbation arrives. As an example, diamond is very hard. However,
if it gets overwhelmed by perturbations, it never bends. It breaks. The
diamond lattice has difficulty dispersing the trouble.

Scale-freeness also comes in again. In scale-free networks the pertur-
bation can propagate easily, even when the probability of transmission
is extremely small (May and Lloyd, 2001). However, in finite scale-
free networks, there is a threshold (Dorogovtsev and Mendes, 2002;
Park et al., 2005b), which means that below a critical connection (at
low transmission probabilities), the perturbation may only have a re-
stricted trip and may even get stuck somewhere in the network. The

7Complex network functions – all the characteristic features of a living organ-
ism – cannot be performed in the absence of widespread network communication.
Life requires the integrity of the networks which form the living organism.

8The sudden appearance of the giant component and the emergent properties
of the network may have formed the empirical background of the Taoist and later
Hegelian dialectic concept of “quantitative changes becoming a qualitative change”
(Hegel, 1989).
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small worlds of scale-free networks seem to be small in a dual sense.
They give long-range connections and they concentrate most of the
important connections in a local environment (Lai et al., 2005).

“Your scale-free networks seem to lose out this time, Peter!” Not yet, Spite. We
have not yet taken into account connection weights. The chances of the
perturbation getting jammed in double scale-free networks, where both
the degree distribution and the weight distribution exhibit scale-free
behavior, are much smaller than in random networks (Toroczkai and
Bassler, 2004). In other words, natural, weighted scale-free networks
seem to be quite good at combining fast relaxation and restricted travel
of the perturbation. In other words, scale-free networks are rather sta-
ble. This explains the earlier findings and assumptions that scale-free
topology is an important element in the stabilization of many networks
(Fox and Hill, 2001; Barabasi, 2003).

The positive side of traffic jams: spam protection and
local dissipation. The relative difficulty in searching scale-free networks in-
creases even further if the network has a modular or hierarchical structure
(Rosvall et al., 2005). Disassortative networks, where hubs are only seldom
linked to each other, also restrict travel (Brede and Sinha, 2005). These dif-
ficulties confine damage due to perturbations and may also help networks to
protect local areas from non-related communication (Rosvall et al., 2005). A
carefully balanced combination of efficient local dissipation and global com-
munication might be a key point in network design and survival.

What is the difference between the news and pertur-
bations? “Peter, a question has been repeatedly popping up in my mind for some time
now. You said that we need a careful balance between local dissipation and global com-
munication in the network. How does the network know which change is a perturbation
that has to be confined and which is a piece of information that has to be transmitted?”
Spite, you have hit upon a good point. I am afraid the exact answer is not re-
ally known. I suspect the answer is similar to the one I gave as the difference
between a signal and noise. The network considers as information only those
perturbations which arrive often enough for it to develop a learned response,
or which are important enough for the survival of the network. These pertur-
bations get the network highways to go right round. All other perturbations
are brought right round in local segments of a well-designed network, until
they level off.
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Fig. 3.5. Local dissipation and global communication. Networks should com-
bine the benefits of local dissipation and global communication. Confined
dissipation keeps the unspecific perturbation, called noise, in a restricted
segment of the network. Global communication helps a few specific pertur-
bations, called signals, for which the network has developed an adaptive re-
sponse. These signals may reach distant elements of the network

Carefully confined relaxation may be an important element in the way
the emerging complexity of self-organizing networks ‘develops’ stabil-
ity (see Fig. 3.5). I will discuss an example of this in Chap. 6 in the
context of complex gene networks, where a channeling behavior oc-
curs without any extra additional mechanisms (de Visser et al., 2003).
Self-organization often leads to the development of scale-freeness, mod-
ularity and network hierarchy, causing an ‘automatic’ stabilization of
the network.

3.2.2 Self-Organised Criticality

We have seen that scale-freeness helps the local dissipation of pertur-
bations. But what happens if a perturbation cannot be dissipated and
gets stuck? Tension will develop. A very spectacular example of this
scenario occurs when the perturbation is continuously repeated and
the tension keeps on increasing. The development of tension does not
lead to major problems for quite a while, since the individual perturba-
tions arrive separately and get stuck at different points of the network.
However, as more and more perturbations arrive, local tensions accu-
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mulate and may develop to a point when a propagating relaxation
suddenly occurs like a kind of avalanche.

This behavior was called self-organized criticality by Per Bak (Bak
et al., 1987; Bak and Paczuski, 1995; Bak, 1996). Unfortunately, self-
organized criticality remained a rather loosely defined concept, describ-
ing a phenomenon in which, in a network with restricted relaxation,
a gradual increase in tension is followed by sudden avalanches.9 How-
ever, self-organized criticality is a very general phenomenon, and it is
also very helpful for understanding network behavior. I will describe its
meaning and give several examples of similar behavior in the following.
At the critical event, a sudden relaxation develops, the effect of the
perturbation starts to propagate, and finally a larger segment of the
network will communicate. A netquake occurs. The extent of netquakes
has a scale-free distribution in the given network, both in spatial extent
and duration (Bak et al., 1987; Bak and Paczuski, 1995; Bak, 1996).10

The frequency of occurrence also has a scale-free distribution. This
shows that there is a correlation between netquakes, i.e., the netquake
frequency depends on the whole history of the system (Lippiello et
al., 2005). This is in fact true of most natural, self-organizing, critical
events, and reflects the general behavior of pink-noise structures as
described above (details will be given later).

Self organized criticality may lead to the development
of scale-free networks. Self organized criticality reorganizes the network
structure as the avalanches pass away. Elements will be disconnected, then
reconnected again. Fronczak et al. (2005) showed that the network reorgani-
zation may find the equilibrium in which both the degrees and the avalanche
properties exhibit a scale-free distribution.

9Originally, Per Bak and coworkers (1996) defined self-organized criticality for
a rather well-characterized set of events involving sand piles, or rice piles. In this
chapter, I will considerably generalize this concept to demonstrate its applicability
in our everyday life. This may be misleading. I would like to ask the patience of
those who prefer exact definitions and better defined concepts.

10Netquakes may be regarded as events in which the barriers confining per-
turbations to certain network areas start to break, and as perturbations start to
communicate, more and more barriers cease to exist, or are overcome. Perturbations
fluctuate continuously and get dissipated to different extents at a given instant of
time. Consequently, a netquake is a rather stochastic process which soon stops in
most cases. However, some exceptional netquakes propagate violently. The succes-
sive completion of distinct events during the occurrence of a netquake may explain
the scale-free behavior of netquakes (see Sect. 2.2).
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Netquakes are violations of the fluctuation–dissipation
theorem. The fluctuation–dissipation theorem is a famous statement of sta-
tistical physics related to the phenomenon that a fluctuation in a system is
dissipated as it returns towards equilibrium. A well-known form of this state-
ment is the Stokes–Einstein relation between diffusion and viscosity, stating
that D = T/cη, where D is the diffusion constant, T is the temperature
measured in kelvins, c is a constant, and η is the viscosity. Here the fluc-
tuation is Brownian motion, dissipated by resistance due to the viscosity
of the surrounding material. Heterogeneous and/or slowly relaxing, glass-like
phases can avoid equilibrium in the long term, thus violating the fluctuation–
dissipation theorem. Here again, relaxation is confined and happens by direct-
ing the perturbation to the fastest relaxing segment of the network (Grigera
and Israeloff, 1999). The extent of the violation of the fluctuation–dissipation
theorem follows a scale-free distribution (Bonn and Kegel, 2003). This is in
agreement with the scale-free behavior of netquakes, which probably occur in
most cases here. In fact, the deviation from the fluctuation–dissipation theo-
rem can be used as a measure of metastability (Bonn and Kegel, 2003), and
maybe also as a measure of system complexity (the definition of complexity
will be detailed in Sect. 4.4).

Netquakes can have a wide variety of forms. Earthquakes, landslides,
forest fires, fractures, volcanic eruptions, avalanches, protein quakes,
magnetization propagation (the Barkhauser effect), quasar emissions,
solar flares, dripping faucets, rain, and many more examples mentioned
in the last section, like the crackling noise we hear when we crumple a
piece of paper, belong to the class of obstructed relaxation events and
all conform to the rules of self-organized criticality (Alessandro et al.,
1990; Bak, 1996; Bazant, 2004; Cote and Meisel, 1991; Gilden et al.,
1995; Gisiger, 2001; Halley, 1996; Lu and Hamilton, 1991; Malamud
et al., 1998; Milotti, 2002; Penna et al., 1995; Sethna et al., 2001;
Turcotte, 1999).

Panic quake. One of the recent developments of self-
organized phenomena came from Hungary (Helbing et al., 2000) and the
Philippines (Saloma et al., 2003). Humans turn into a flock of sheep if a
real danger arrives. This herding behavior is known scientifically as an al-
lelomimetic tendency. Our most important decisions are made by our emo-
tions (Damasio, 1994; Rolls, 1999), and this old thalamic system most prob-
ably takes over in panic reactions. We trample each other, form arches in



62 3 Network Stability

front of exits, effectively block the only escape route, do not use alternative
escape routes, etc. (Helbing et al., 2000). Saloma et al. (2003) studied mice,
not humans. On the basis of the above notes, this would not seem to make a
significant difference! There was a difference though. Unlike some of us, mice
do not like to swim. The finding was that they left the pool in groups with
a scale-free distribution. These mice seem to be as socially handicapped as
we are. They probably watched the seniors. Would they dare to jump out?
Nothing happened for quite a while, but tension built up. And then, sud-
denly one mouse equivalent of spiderman jumped and a whole flock followed
immediately, causing an instant relaxation, or panic quake.

The nature of thunder and lightning. There are many
more phenomena which behave rather similarly but have not yet been clas-
sified as networks reaching self-organized criticality. One of these is thunder
and lightning. Here we may also discover all the items in the inventory: the
series of events helping static to grow, thereby developing tension in the form
of a voltage, and the sudden relaxation at the end (Nebuchadnezzar might
have a story like this to tell!). It would be nice to establish the scale-free
distribution of lightning intensities and the loudness of thunder. In fact, the
1/f bursts11 of very low-frequency electromagnetic radiation coming from
lightning discharges (Magnasco, 2000) strongly suggest that this is the case.

Fortunately, volcanic eruptions, landslides, and panic are not common
everyday experiences. Protein quakes are too small and solar flares are
too distant to observe. (So astronomers say. For the solar flare, you
have only two opportunities with a telescope and bare eyes: one for
your right eye and another for the remaining left!) However, there is
one very important example of self-organized criticality at each mo-
ment of our life: lung quakes. Whenever we take a breath, the indi-
vidual airways open in an avalanche-like fashion, producing the same
scale-free statistics as all the other critical phenomena listed above
(Barabasi et al., 1996; Suki et al., 1994).12 A few more common exam-
ples of netquakes will be listed here.

Tick quakes. Self-organized criticality may be much more
common than we think. Peterson and Leckman (1998) showed that ticks,

11This is the same as 1/t noise, an example of pink noise (see Sect. 2.1).
12Actually, the ‘reverse phenomenon’, coughing, may also be a self-organized

critical event and asthmatic bronchoconstriction has recently been described as a
self-organized event (Venegas et al., 2005).
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which are rapid, brief, unintentional skeletal or vocal muscle movements in
some people, like those with a Tourette syndrome, follow scale-free statistics.
Ticks may in fact be muscle quakes, exhibiting bursts of the tension which
has gradually built up in these patients and could not be gradually dissipated
as it would in the rest of us.13

Gossip quakes. When a gossiper hears a great story,
tension develops: “I should tell someone this!” The more stories arrive, the
more likely a gossip quake is to occur. Eventually, the gossiper cannot resist
any longer and picks up the phone. It may be worth asking whether time
intervals between the transmission of two consecutive pieces of gossip obey
scale-free statistics.

In all these events, both the probability and the magnitude of the
event follow pink noise (Milotti, 2002; Sethna et al., 2001). What does
this mean? If the event has 1/f noise statistics, there is a non-zero
probability for any event which is an order of magnitude larger, but
this probability is an order of magnitude smaller. We have a clear sense
for this in the case of rain or earthquakes. Fortunately it is only very
seldom that we have a devastating earthquake, or rainfall so heavy
that it smashes everything or washes everything away. However, this
is a general phenomenon. So watch out next time you start to crumple
your candy paper at the movies. If you are truly unlucky, it may make
a really big noise. “I cannot believe that I will ever go deaf after crumpling a
candy paper at the movies.” Yes, Spite, you are right. Natural scale-free
events usually have an exponential cutoff. So there is no need to worry
about going deaf due to a sudden noise explosion from your candy
paper.

Our life is full of netquakes, from birth to death. Let me list a few
examples here:

Ogling quakes. A girl and a boy travel on the bus.
After the first glance, they both realize that the other is the most beautiful,
most charming person they ever saw. Good manners, however, require them
to stop gazing at each other after a second or so. “I need to see her again!”
As the seconds pass, a significant tension develops. All of a sudden, good
manners are forgotten, and they start ogling again. What is the distribution

13If you are a psychologist and after this sentence you want to throw the whole
book into the fire, I ask you to consider the fact that this response might reveal a
tension–relaxation problem.
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of the length of gaze-abstaining periods? What is the distribution of gazing
intervals? It is probably scale-free.

Woo quakes. Suppose the girl and the boy
finally met. Now it is said that love makes one beautiful. If you have ever
watched an amorous girl or boy, you will certainly agree that the statement
is true. But why do we look more beautiful when we are in love? We do
not look different. We start to behave differently. We become more playful.
What does this mean? Among the many changes, we may observe sudden,
unexpected movements and a kind of indolence. What is the driving force
behind these movements? If everything goes well, a kind of continuously
growing tension develops, pushing us to do things that are not really the
right thing to do in the middle of the street, on the subway, etc. What is
actually happening? Sooner or later a pseudo-action will follow. The ten-
sion relaxes by an unexpected small jump, by a sudden kiss, or a smile to a
complete stranger. The relaxation is not complete, however. A large amount
of this happy tension remains, and starts to grow again. What do we call
these relaxations? They are woo quakes. What is the most probable distri-
bution of the periodicity and extent of unexpected, playful actions? It is
scale-free.

Sex quakes. Let me continue the above story. Imagine
that the same couple finally reach a comfortable apartment, or a less comfort-
able glade in the forest, a boat, a space station, a live show, wherever their
habits and possibilities may have brought them. Continuous – or perhaps
it is better to say rhythmical – input of energy, gradual growth of tension
and then, suddenly: BANG! The relaxation occurs like an avalanche, like the
eruption of a volcano. Is this familiar to you? Evolution seems to figure out a
self-imposed method for rehearsing scale-freeness in a joyful manner. Some-
times it is good, sometimes it is better. Can it be even better? If this is really
scale-free, our happy couple always has a chance for an order of magnitude
larger effect, although the chances of this are an order of magnitude lower.
The scale here is probably rather limited. Are you sure? Our couple is like
the inhabitants of Los Angeles. They can always hope that the next will be
the Really Big One. I must admit, my example is perhaps not the best this
time, since the emotional background of the two expectations seems to differ.
“Peter, let me remind you of what you said just a few lines above: natural scale-free
events usually have an exponential cutoff. It might be disappointing to you but the
same principle has to be applied here, I am afraid.”
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Baby quakes. It is now nine months later. I see a cute
baby with a comforter. Babies may use their comforters to relax a multitude
of tensions which reach them continuously from the new and alien world. In
the absence of comforter-induced relaxation, crying (a baby quake) develops.
Both suckling of the comforter and crying may follow a scale-free distribution,
although obviously in periods when the baby is awake.

Growth quakes. Let us take one more step. Our baby starts
to grow. The young cells keep dividing. However, divisions themselves are
multiply regulated and the growth of different tissues is not synchronized.
A tension develops and growth becomes saltatoric (Lampl et al., 1992). Un-
even growth brings us beyond self-organized criticality, since here tension
development is not steady but follows a multidimensional pattern. Instead
of exhibiting a simple scale-freeness, growth quakes may resemble the multi-
fractal properties of heartbeats which are described in Sect. 7.2. Indeed, later
studies (Thalange et al., 1996) showed that the rules for saltatoric growth can
be very complex. Uneven growth is used by plants to change their shape or
catapult their seeds, and has become an important category in evolutionary
economy (Feenstra, 1996). I will spare you from a quake version of ‘Bud-
denbrook House’ to describe the life of the happy couple, but I hope I have
convinced you that, until the very end (crying quakes of the same baby, now
a little older, at their funeral), their life will be full of similar events.

In the self-organized critical state, weak links break first (behaving like
the weakest link of the chain). In the netquake, the rearrangement of
weak links helps to restabilize the system. In other words (Sethna et
al., 2001): “Not all systems crackle. Some respond to external forces
with many similar-sized, small events (for example popcorn popping
as it is heated). Others give way in one single event (for example, chalk
snapping as it is pressed). In broad terms, crackling noise is in between
these limits: when the connections between parts of the system are
stronger than in popcorn, but weaker than in the grains making up
chalk, the yielding events can span many size scales. Crackling forms
the transition between snapping and popping.” Crackling needs weak
links.

Culture quakes. When I wrote the first version of this book,
we had the 40th anniversary of the Beatles avalanche in the USA in 1964.
Why did they reach such a large segment of the society in such an incredibly
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short time? Why do cultural and technological innovations resemble self-
organized criticality? Innovations should reach a percolation threshold (Ryan
and Gross, 1943), after which they suddenly became a general custom of the
majority of the social network. The acceptance of innovations is a cooperative
action, which inherently contains the possibility of avalanches (Watts, 2002)
and has indeed been shown to behave as a self-organized critical phenomenon
for the change in pottery styles and for the propagation of the idea of self-
organized criticality itself (Bentley and Maschner, 2000; 2001). Weak links
may also contribute to the occasional burst of innovations, novel ideas or
cultural changes to the whole society. These innovations often come from a
module of the society14 which is connected to the rest by weak links. Once
the innovation has passed this bottleneck, as the Beatles crossed the ocean,
it gets a free ticket to ride around.

Schumpeterian innovation clusters. The phenomenon of
innovations breaking away from a state of relative isolation – combined with
the notions of cooperation and the percolation threshold – may also help
to explain Schumpeterian clustering of innovations (Schumpeter, 1947), i.e.,
a surprising onset of serial innovations behaving like bursts, and coming in
clusters. As innovations spread in society, they will sooner or later reach
someone who may add a new element to the existing design. The number
of persons reached by the innovation probably follows scale-free statistics.
Moreover, the innovative process itself consists of individual steps, where the
next step depends on the one before. These processes also display a scale-free
pattern.

To sum up, if we seek network stability (and so we should, otherwise
we die),indexdeath we need a highly efficient but local relaxation. To
achieve this, the perturbation has to reach the elements of the given
segment of the network rapidly enough. In other words, we need small-
worldness for efficient local dissipation. We also need small-worldness
for the global communication of signals. On the other hand, we need
scale-freeness and nestedness (in the form of network modularity) to
confine the perturbations. Efficient networks combine global connec-
tions with local relaxation.

If many perturbations arrive and get arrested one by one, avalanches
will occur sooner or later. For this latter event, we need a constant in-
flow of perturbations, the subsequent development of a tension, and
then its sudden relaxation through an avalanche. There is another

14I am grateful to Viktor Gaál for this idea.
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Fig. 3.6. Crackling forms the transition between snapping and popping

important message here, if we put the last sentence in a slightly dif-
ferent form: for self-organized criticality, we need the constant inflow
of energy, the subsequent development of tension, and then its sud-
den relaxation by an avalanche. For this exposes a surprisingly general
meaning. Without a constant inflow of energy, there is no life. The
arrival of energy drives the system forward, and by making the system
thermodynamically open, allows a decrease in its entropy.15 However,
each energy packet is a new perturbation, and they must all be dis-
sipated. Therefore, relaxation is necessary for life. And we had better
ensure that it is fast and confined. Life behaves as a carefully confined
relaxation phenomenon in globally connected networks.

15The free energy has to decrease for any change in the self-organizing networks.
Since the free energy is defined as G = H − TS, where G is the Gibbs free energy,
H is the energy, T is the temperature measured in kelvins, and S is the entropy,
we need an inflow of energy (negative ∆H) to compensate the decrease in entropy
(negative ∆S) and keep the free energy change negative.
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3.3 Network Failures

Spite! You have become suspiciously silent. It is time to snap out of this
dream-world relaxation. Wake up! Here is a question: What happens,
if perturbations are not only temporarily, but hopelessly stuck in the
network? I see your thoughts are still far away. I will give you the
answer: if relaxation becomes impossible, than one or more elements
of the network will receive a perturbation big enough to cause the
disassembly of the bottom network below the unlucky element where
the perturbation got stuck.

Let us consider an example. On 10 August 1996, the failure of a
power line in Oregon led to a black-out in several states of the USA
and Canada. What happened? Due to a combination of extremely
high temperatures and a full power load at about 3:40 pm, the 500 kV
line connecting the Keeler and Alston substations in Oregon sagged
so much that it touched a tree and was immediately shorted. The re-
sulting frequency oscillations knocked out 13 hydroelectric units at the
McNary Dam. The disassembly of these bottom networks cut the main
inter-tie, which runs between Oregon and Southern California, caus-
ing a chain of breakdown events as far as Nevada, New Mexico and
Arizona. This triggered further outages throughout the whole west-
ern region of the USA leaving more than 4 million people without
electricity in 11 states (O’Donnell, 2003). The national disaster on 10
August started due to relatively minor initial damage. However, this
was enough to switch off the 13 hydroelectric units nearby and was
immediately magnified. Such behavior is called cascading failure and
is typical of network structures. Similar cascading failures have been
observed in the economy, in earthquake aftershocks, and in other con-
texts (Bak, 1996; Moreno et al., 2002). One of the best examples of
this is the domino effect. With only a slight touch, the long line of
dominos all topple over in a fraction of a minute.

Power net quake. “This cascading failure reminds me of the dis-
turbing variety of quakes in the previous section. Don’t you think you have forgotten
to mention something?” Well done, Spite! You learned your netquake stories
very well! Indeed, the cascading power failures can be regarded as events of
self-organized criticality in the power net (Carreras et al., 2004). The continu-
ously increasing tension is the increasing load on the system. The continuous
input of energy is rather obvious. Relaxation comes in the form of system
failure. (Well, this relaxation does not seem to be valid for the controllers!)
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Fig. 3.7. Permanent random damage can lead to a massive network mal-
function

This is bad enough. If we cannot design systems wisely, to save our
network from cascading damage, we may start to collect ice cubes
on every hot day during the summer (or move to Alaska). But the
situation is even worse. We do not even need a cascading failure
to impair a network. Although scale-free systems are rather insen-
sitive to random damage (which is why evolution did not throw them
straight into the garbage can), they are much more sensitive if any
of their highly connected nodes, the hubs, gets damaged (Albert et
al., 2002). This is what pushed the situation from bad to worse and
from worse to disastrous in August 1996, as the local damage discon-
nected the Oregon–Southern California inter-tie, causing an avalanche
of further damage. Cascading failures reach hubs rather quickly, and
sooner or later they are sure to reach a hub as they propagate in
the network. As seen above, cascading failures may sequentially in-
capacitate the network up to a critical point where the giant com-
ponent collapses and the network ceases to function (Moreno et al.,
2002).

Error and attack tolerance of scale-free nets. If com-
pared to a random graph, a scale-free network is surprisingly stable against
random damage, but vulnerable against a planned attack (Albert et al., 2000;
Bollobas, 2001). The following gives a few details concerning error and attack
tolerance of various networks:

• Exception One: When random damage is also bad. As opposed
to occasional random damage, permanent random damage can cause a
massive malfunction of the network (Dorogovtsev and Mendes, 2001). In
other words, aging can devastate our networks. Not abruptly, but effi-
ciently. Some examples of this are discussed in Sect. 6.4.

• Exception Two: When a planned attack is not that bad. Assorta-
tivity makes the network resistant against planned attacks. In an assorta-
tive network, similarly connected elements associate with each other. Hubs
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like hubs, smaller nodes seek nodes, and almost isolated elements will be
associated with similarly isolated elements. Such an assortative network
is quite typical in social nets. For the most assortative network, ten times
as many hubs have to be removed to destroy the giant component than for
the most disassortative one (Newman, 2003a). However, assortative net-
works are more unstable than disassortative ones. In assortative networks,
perturbations can propagate further and a better synchronization leads
to larger dynamical fluctuations (Brede and Sinha, 2005; di Bernardo et
al., 2005).

• Not all networks are scale-free. As a final remark, I would like to
warn you that it is only because of their wide occurrence and stability
that we are talking so much about scale-free networks. There is a whole
universe of unexplored network structures out there. To give but one pos-
sible example, a simultaneous optimization with respect to both random
damage and intentional attack gives novel types of networks (Valente et
al., 2004; Paul et al., 2004; Shargel et al., 2003).

Where does the perturbation get stuck? Do perturbations
cause random damage? In principle, a perturbation may get stuck anywhere
in the network. In practice, this is probably not true. I have not yet found an
exact answer to this question. Perturbations may get stuck at narrow points of
the network, where the connection is weakest.16 Alternatively, perturbations
may get arrested at hubs, where most traffic converges and causes a jam. In
the latter case the perturbation behaves like a terrorist, attacking the most
vulnerable points of a scale-free net. Do our networks direct the damage
to their most vulnerable points, thereby making us hostages of terrorists?
Fortunately not. The giant component of the network is well preserved even
in the case of a planned attack. For example, the World Wide Web will remain
connected and functional even after the removal of all of its nodes of degree
higher than five (Albert and Barabasi, 2002).

The wisdom of our cells: low flux comes with
high stability. Enzymes are parts of the metabolic network of our cells.
Their stability is governed by the stability of their protein structure. If we
introduce a few extra, stabilizing bonds, we will make the mutated protein
more rigid. However, increased rigidity leads to diminished enzyme activity
(Shoichet et al., 1995). Thus our stable protein will most probably be a
‘weak point’ of the metabolic net, since it will have a low flux and will offer

16These may be weak links between modules, which are often characterized by
a high betweenness centrality (Gfeller et al., 2005).
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better chances for the perturbation to stop. However, it is not bad if the
perturbation stops here, since our ‘weak point’ is not in fact weak at all: with
our stabilizing mutations, it has become more stable than the average protein
in the original network. Thus the metabolic network of our cells may contain
two types of protein: (1) high achievers, which have a high flux, ensure most
of the tasks required for cell survival, but have a low stability and pass the
perturbation to their colleagues, and (2) low achievers, which have a low flux,
and consequently do not do much work, but have a high stability and absorb
the perturbation, thereby saving the high achievers from major damage. If
we look around at social networks, we may start to think that this division
of labor is rather general in networks.

It is time to turn back to our cascading failures and confirm the ini-
tial statement: they are still most annoying. We build up networks at
high cost, and yet they sometimes literally melt down in a matter of
minutes. We have to make them safer. If the disconnected Oregon–
Southern California inter-tie caused such big trouble, why do not we
make another, parallel inter-tie? Actually, why do not we duplicate
most of these sensitive lines?

Doubling the network seems to be a rather bad idea. According
to a very interesting model worked out by Duncan Watts (2002), too
many connections may make the extent of damage unpredictable. The
Watts model is based on a scenario in which the status of each element
of the network depends on the average status of its neighbors. This
setup suits the description of any domino-type cascade, like the chain
of events in August 1996, where neighbor influence is predominant.
If we start to increase the number of connections in this network,
we eventually reach a critical point where cascading failures become
possible. Here a scale-free distribution of cascade size is observed. This
means that most cascades will be small, whereas large, devastating
cascades will occur only seldom. Paradoxically, if we then go further,
cascades become larger but more seldom. This is due to the dilution
effect. When a node has too many neighbors, the influence of each
will be diminished. Interestingly, close to this second, critical point, a
bimodal size distribution is observed, where large cascades have much
greater chances of occurring than in the scale-free distribution regime.
This implies a more extreme type of instability which is even harder to
predict (Watts, 2002). Thousands of perturbations may arrive without
any of them having any effect. And then the proverbial last son of
the Perturbation Family gets in, smallest of all, and suddenly, in a
single miraculous second, a gigantic cascade erupts. The instability of
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‘overconnected’ networks is rather general and can be applied to food
webs, trade networks and power nets (Fink, 1991; May, 1973; Siljak
1978).

Vulnerable points of networks. After the September 11
terrorist attack, a considerable research effort has been directed at identifying
the most vulnerable points of our networks and figuring out methods for
saving them. It turns out that the original ideas – that hubs are the most
sensitive points of scale-free networks (Albert et al, 2000; Jeong et al., 2001)
– were only partially true for real, weighted networks. Devastating global
cascades are likely to occur if we remove a node with one of the highest loads
in the network and if the network previously had a highly heterogeneous
load distribution (Lai et al., 2005). Our cells offer an efficient and low-cost
experimental field for studying network damage. Node removal here can be
achieved by the deletion of a gene from the blueprint of the cell, the DNA,
or by destroying the messenger RNA by a method called RNA interference.
If the deletion was lethal, we have very likely struck out an important point
of the network.17 Comparison of the lists of lethal genes with their position
in cellular networks has revealed that it is difficult to find simple correlations
between a given network property and lethality, but a central position in
cellular communication was a rather good predictor of the lethality of the
deletion (Coulomb et al., 2005; Estrada, 2005; Schmith et al., 2005).

Our original plans for a giant network of parallel inter-ties are thus
rejected. Should we give up? Should we live in uncertainty? No, there
are ways to solve the problem of cascading failures.

Tricks to protect our networks against cascading fail-
ures. So far I have not mentioned the easiest trick: do not make more ties,
make bigger ones! Increase the capacity of the whole network. As the capacity
is increased, cascades will be diminished (Lee et al., 2005a). However, this
requires enormous resources which are not often available. There are other
solutions:

• Redistribute the load. If the traffic of the most central nodes is re-
distributed to other, non-central nodes, the network capacity can be in-
creased by a factor of ten (Ghim et al., 2004; Yan et al., 2005).

17The interpretation of individual data is rather difficult here, since the dele-
tion of an enzyme protein offering a unique reaction, which produces an essential
molecule for cell survival, is certainly lethal, and yet this peculiar protein will never
pop up in any network analysis as ‘important’.
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• Rewire in the neighborhood of the damage. If a node is destroyed,
an emergency rewiring of its neighbors can save the network (Hayashi and
Miyazaki, 2005). We may make these rewired substituting nets around the
most vulnerable nodes as a precautionary measure.

• Damage the network, if you want to save it! This rather tricky
method has been described by Motter (2004), who proved that the selec-
tive removal of network elements and links with either a small load or a
large excess of overload also diminishes the size of the cascading damage.

I have left the really big invention until last on the list of rescue efforts.
This is the modular structure of the networks. In fact, this is what
was actually implemented after the power-failure disasters in the USA
(O’Donnell, 2003). Cascading failures can be stopped at intermodular
borders. “Wow! Do cascading failures arrive at the bridge connecting the two sides
of the border, and start to shout: ‘Damn it! I left my passport at home again!’ ” No,
Spite, the real situation is more striking than that. When cascading
failures arrive at the bridge connecting the two sides of the border,
the bridge starts to shout: “Damn it! Cascading failures!”, and then
collapses. The central idea of the book, weak-linkness comes in again
here. Intermodular contacts are often formed by weak links. These
contacts may behave like a fuse and melt when the damage arrives.
“Peter, your brain seems to have got boiled in the hot August of 1996. You just made a
big issue about the break of the Oregon–Southern California inter-tie and now, what do
you want to sell us? That your favorites, those fabulous weak links are good because
they break.” I know, this is the point when you throw the book into the
trash can for the 67th time.18 The key point is this: after breaking
the inter-tie, the two electrical systems were still connected and the
damage could still propagate from one to the other. If I can really
disconnect the module – because it is linked to others exclusively by
weak links, and not by strong inter-ties, where one may melt but the
others still remain as viable connections – the module may become
self-sustaining and still be able to function.

Weak links and microcracks. Intermodular weak links help
a number of natural networks. As one example, the fracture process in various
materials depends strongly on their heterogeneity. Heterogeneous materials
produce microcracks which begin to merge to reach a critical density. Here the
microphases (modules) are connected by weak links (weaker forces) allowing a

18This actually means that my beloved work has already been fished out of the
trash 66 times: I thank the reader! If it is getting too dirty, you may just go and
buy another one. I promise the publisher will love both of us.
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selective relaxation of the tension by the disconnection of the modules. Perfect
crystals have no weak links and no modules, so that they break unpredictably,
causing a sudden and devastating decomposition of their structure and often
producing a scale-free fragment size distribution (Bazant, 2004; Kun et al.,
2005; Sornette, 2002).

In conclusion, if you witness a constant inflow of perturbations, pre-
pare for the worst. A cascading failure may start, leading to devastating
damage in your network. A scale-free degree distribution will help a lot
to fend this danger off. However, perturbations do not cause random
damage. They act like terrorists, often preferring hubs and critical con-
nective elements between distant segments of the network. Therefore,
modules become critical for stopping a damage avalanche. Weak links
help to control cascading damage, and thus save the connectivity and
the life of the network.

3.4 Topological Phase Transitions of Networks

We may feel better after the previous section. If we have any trouble
with network construction, or a number of perturbations get stuck, we
do not necessarily have to find a new network. Our old network can be
rescued. But what happens if our network gets completely saturated
with perturbations? Should we give up?

Why are more perturbations worse than a few? So far I
have been unable to find an elegant proof of this instinctive truth. Networks
may have a characteristic relaxation time. If the next perturbation arrives
sooner than this, it cannot be dissipated and the new perturbations just
pile up.

However many perturbations arrive, a good networker – and let me
invite you to join the club – never gives up. There is still one more
way to escape: a topological phase transition. Networks may undergo
a series of interesting transformations called topological phase transi-
tions. A topological phase transition occurs if the continuous increase
in the number of perturbations provokes a singular change in the global
topology of the network. The global topology is best monitored by the
measure G/N , where G is the size of the largest connected component
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Fig. 3.8. Topological phase transitions of networks. The figure shows the
topological phase transitions random graph → scale-free → star phase →
disintegrated, fully connected subgraph (Derenyi et al., 2004; Palla et al.,
2004) as resources become more and more limited or stress grows. Note that
resources and stress have been substituted for the network temperature used
in the original publications. The level of complexity, and also the random and
scale-free graphs, are merely illustrative

of the network and N is the total number of its links (Derenyi et al.,
2004; Palla et al., 2004).19

If we keep the network at a high temperature and perturbations ar-
rive continuously, new connections can easily be formed. Under these
conditions, the whole network will resemble an Erdős–Rényi-type ran-
dom graph (Erdős and Rényi, 1959; 1960). In such networks all connec-
tions are formed at random, and all elements have the same probability
of being connected. If we lower the temperature, a condensation oc-
curs, where compactness is increased and higher degrees are preferred.
The network will first develop a scale-free degree distribution. Finally,
it will arrive at a star conformation where one or very few mega-hubs
dominate the whole system (see Fig. 3.8).20 The star network resem-
bles dictatorships in social networks. If we decrease the temperature
further, the star phase will condense even more, which is possible only

19Alternatively, the measure kmax/M can also be used, where kmax is the largest
degree of the network and M is the number of edges in the network (Derenyi et al.,
2004; Palla et al., 2004).

20A similar emergence of the scale-free network together with transitions between
graphs with variable degrees, star phase and random structures has been described
by Biely and Thurner (2005).
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by disintegrating the original network to produce fully connected sub-
graphs. This means the disappearance of the giant component, and
if the network was a living system, this topological phase transition
would be called death.

The ultimate peace: a single, fully con-
nected graph. If we decrease the temperature even further and the network
approaches an absolute, undisturbed peace, the isolated, fully connected sub-
graphs will condense to a single, fully connected graph in the physical model
(Derenyi et al., 2004). The meaning and significance of this condensation is
currently unknown in biological or social networks. Most probably, the fully
undisturbed phase is so hypothetical in these systems that we actually never
experience the fully connected full graph phase. We can only speculate! If the
subgraph phase corresponds to the death of biological networks, what is the
phase which comes after it, when things get unrealistically peaceful?

Topological phase transition reflected by the scaling
exponent. Let us return to the general formula for the degree distribution
in scale-free networks: P = cD−α, where P is the probability of the given
degree in the network, c is a constant, D is the degree, and α is the scaling
exponent. Using the expression above, we may describe the topological phase
transitions as a gradual change in the exponent α. The exponent starts from
1 (denoting random networks), grows until about 4 (denoting scale-free net-
works, see Table 2.1), and then grows further to even higher numbers showing
the presence of fewer and fewer hubs with more and more connections. As the
scaling exponent α becomes larger, the degree distribution will shift towards
an exponential decrease, implying a rapidly decreasing number of highly con-
nected elements and reaching the star phase as an extreme case.

We can transpose the driving force of the above topological phase
transitions, the network temperature, to a different context. At high
temperatures, our lucky network enjoys a large amount of energy and
has a high number of connections. Even if the perturbations cause
rather significant damage, there is a good chance that the giant com-
ponent of the network will still be preserved. Moreover, the high energy
contributes to a fast rebuilding of destroyed connections. On the other
hand, if the network is in a low-temperature, low-energy environment,
the average connectivity is lower. The chances grow that the pertur-
bations will hit vital connections which do not have a backup version
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in the network. As an additional angle, if we have a large amount
of energy around, perturbations arrive almost continuously. They are
smooth and predictable. As the outside energy becomes lower, the dis-
tribution of perturbations becomes uneven and unpredictable. This is
a phenomenon I will call stress in this book. In this context increasing
stress provokes topological phase transitions (see Fig. 3.8).

Definitions of stress in physiology and physics. In phys-
iology, the word ‘stress’ was coined by Hans Selye (1955, 1956), who used
the term for a wide range of strong external stimuli, both physiological and
psychological, which cause a general protective response, the stress response.
In agreement with his definition, from the network standpoint, stress is any
large, unexpected, and sudden perturbation of the cellular network, to which
the network (1) does not have a prepared adaptive response or (2) does not
have time to mobilize its adaptive response. In the latter case, the strong
external stimuli overwhelm the elements of the biological networks and fail
to provoke the learned, adaptive response. Stress in this book will be used
differently from stress in the usual sense in physics, where it is a force that
produces strain in a physical body.

Topological phase transitions follow the parsimony principle. Star net-
works involve a lower cost than either random graphs or scale-free
nets, since star networks require less wiring than either of the other
two configurations, but still provide a full connectivity of the elements.
Bentley and Maschner (2000) showed a random → scale-free transi-
tion in the development of a citation network as resources became more
sparse, implying that fewer journals wanted to publish the articles on
those topics. Similarly, Stark and Vedres (2002) described random →
scale-free → star topological phase transitions of business consortiums
as the economy worsened. A decrease in connections as a source of sta-
bilization has also been demonstrated with a simpler network model
in early work by Gardner and Ashby (1970).

It is now time to go back to our starting point: an overwhelming
number of perturbations. When a perturbation gets arrested in the
network, the unlucky element at which this happens receives a lot
of focused energy. In extreme cases, whatever old connections there
were around this element stop functioning and the element is free to
seek out and build up new connections. In principle, the underlying
scenario for a topological phase transition is created. If the energy level
is generally low, more connections around the unhappy element will
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be broken, than reformed. Connections are lost, condensation occurs,
and we start to go from random to scale-free, from scale-free to star
and from star to disconnected subgraphs.

Topological phase transitions of networks seem to be a fairly gen-
eral phenomenon. Let us consider two examples here. Some of their
elements may seem rather wild, but they nicely demonstrate the imag-
inative power of generalization along the lines of similar network prop-
erties. Obviously, many further experiments and studies are needed to
validate either of these examples.

Topological phase transition 1: Cell death

• Random graph phase. In this cellular state, an abundance of outside
resources provokes a shift in the metabolic network towards the random
graph pattern. The cell has exponential growth, low noise and uniformity.

• Scale-free phase. If resources are reduced and the cell experiences a
low level of stress, a scale-free metabolic network develops. We have
higher noise, some proteins – as elements of the cellular network – be-
come damaged by a few perturbations, and the repair system provided by
chaperones is gradually overloaded, leading to several deviant responses.
Consequently, cellular diversity starts to develop (for further details, see
Sects. 6.2 and 6.3).

• Star phase. With higher stress levels, system resources grow critical.
The cell has to concentrate its energy in the form of ATP consumption
for a minimal set of vital functions, and the metabolic network will shift
towards the star phase.

• Disintegration to subgraphs. If system resources go below the critical
level or noise becomes too great, too many damaged proteins develop, the
system begins to disintegrate and the cell dies from apoptosis or necrosis
(Sőti et al., 2003).

Topological phase transition 2: Ethology

• Random graph phase. The random graph phase corresponds here to
parallel cooperation between members of the animal group. Every animal
does the same thing and there is no sharing out of jobs and tasks.

• Scale-free phase. As resources are reduced, a sudden topological phase
transition occurs towards complementary cooperation, and task distri-
bution develops between various members of the animal community (Le
Comber et al., 2002; Theraulaz et al., 2002).

• Star phase. If system resources become close to critical or the level of
stress increases (e.g., carnivores arrive in great numbers), a star-phase
network develops with a dictator, an alpha male (Hemelrijk, 2002).
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• Disintegration to subgraphs. Extreme danger disorganizes the larger
network, and subgraphs – core families – try to escape and survive to-
gether.21

Topological phase transition of prebiotic net-
works. Shenhav et al. (2005) described the idea that prebiotic catalytic net-
works might have a random configuration and raised the question as to how
this early molecular ensemble changed to the scale-free metabolic networks
we observe today. A topological phase transition may give a clue here. As the
number of prebiotic networks grew and system resources became sparse due
to mutual competition, the random network may have been forced to change
configuration to the scale-free degree distribution we observe today. The dif-
ferences in the reports on the degree distribution of metabolic networks may
also be partially derived from the different configuration of these networks
under various levels of cellular stress.

Striking similarities, are they not? I will list some more examples of
topological phase transitions in firms and in human society later. But
let us stay with our perturbations for a while. I have shown above that
they help topological phase transitions by local disintegration of the
old connections around the unlucky, perturbation-hosting elements. I
also raised the point that with low system resources, not all connections
will be reformed. However, I did not ask which of the links would be
lost: the strong links or the weak links?

The parsimony principle would require the strong links to drop,
since they are more costly. However, if the energy is lower, we need
condensation. This purpose is better served by strong links. As sup-
porting evidence, in the case of high unemployment or any other type
of increased everyday stress, weak links are broken and people tend
to rely on strong links (Granovetter, 1983). In the case of low system
resources, implying a large environmental stress, the link strength and
degree distributions may condense in parallel. The network sheds all
non-essential weak parts and a core of strong links remains. The scale-
freeness of degree and link strength distributions is born and becomes
lost in parallel.

3.5 Nestedness and Stability: Sync

Networks are rather resistant to attack by perturbations. As we have
seen in the previous sections, relaxation, topology-based resistance

21I am grateful to Péter Száraz for these ideas.
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against network damage, and as a last resort, reconfiguration of the
network topology, all contribute to network survival, e.g., the preser-
vation of the giant component, if trouble arrives. In terms of network
properties, fast relaxation requires small-worldness so that perturba-
tions can reach the elements of the local network region as fast as
possible. Confinement of perturbations to this local network region
and resistance against random damage require scale-freeness. Only one
important network property has been left out so far: nestedness.

We have already noted several times that we run into trouble if the
perturbation gets arrested somewhere in the net. It is time to ask why
we then run into trouble. This is where we need nestedness to provide
an answer. If the perturbation gets stuck at a given element, the bot-
tom network that this element actually represents will be overwhelmed
by the large amount of energy it receives, since these energy packets
usually just go very quickly through this particular element.

Is a transient perturbation inefficient? Why is a bottom
network not affected by a large energy packet, if the packet goes quickly
though this bottom network?

There appears to be a delay in the response of bottom networks, lead-
ing to a form of ‘laziness’, or the idea of a time window for escape, that
have hitherto remained uncharacterized. During this time they can put
up with the presence of the perturbation. However, if the perturbation
stays any longer, the bottom network will be in trouble. One quite
widespread form this trouble can take is that the affected bottom net-
works decouple from a synchronous oscillation. “What do you mean when
you speak of the synchrony of oscillations?”

Oscillation synchrony was discovered by Christian Huygens when
he was sick in 1665. As he lay in bed, he watched his two newly con-
structed pendulum clocks on the wall. He had invented these clocks
himself to win the fabulous prize offered by the Royal Society in Lon-
don for a clock which would be precise enough to keep time on ships
sailing long distances across the sea. “With all due respect to all their noble
deeds, these Brits are a bit crazy. Did they pay such a tremendous amount of money just
to have their five o’clock tea exactly on time aboard their ships?” No, Spite, this was
not the case. If you know the Greenwich mean time (or any other time
at a given point on Earth) exactly, you can work out your longitude
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from the time difference. The British sailors needed an exact time to
know where they were, and to situate the treasures they found.

But let me return to Huygens. We left him sick in bed. Well, he is
still sick, and actually gets much sicker. As he lay there, he observed
that the two clocks he had on the wall gradually became synchro-
nized and finally oscillated together. Now that is interesting! Forgetting
about being sick, he jumped from bed and started to reposition the
clocks on the wall. After many experiments (which probably prolonged
his sickness by delaying the resynchronization of the oscillators inside
his own body), he realized that it was the wall that was transmitting
weak signals from one clock to the other to cause the miraculous syn-
chronization. He was proud to report his findings to the Royal Society
(Huygens, 1665). The honourable members discussed his new experi-
ments at their next session of 8 March, and arrived at an unexpected
conclusion: “Occasion was here by some of the members to doubt the
exactness of the motion of these watches at sea, since so slight and
almost insensible motion was able to cause an alteration in their go-
ing” (Minutes of the Royal Society meeting, 8 March, 1665). Huygens
never got any money for his pendulum clocks. The million dollar prize
had to wait a hundred years. Huygens got very disappointed and never
dealt with the synchrony phenomenon again (Strogatz, 2003).

Fortunately, others did. Steven Strogatz gives a wonderful survey
of the synchronization of various oscillators in his excellent book Sync
(Strogatz, 2003).22 Chemical oscillators like the 64 nickel electrodes
of Kiss et al. (2002) can vary their potential in synchrony; temporar-
ily synchronized neurons ensure successful memory formation (Fell et
al., 2001); and our level of synchronization with circadian rhythms
(Ogle, 1866) can be conveniently studied on sleepless nights after a
transcontinental flight. Visual and acoustic interactions make fireflies
flash (Buck, 1938), crickets chirp (Walker, 1969) and audiences clap
(Néda et al., 2000) in synchrony. Women living together synchronize
their menstrual cycle (McClintock, 1971). Hare and lynx populations
of Canada are even better. Their population cycle can manifest a syn-
chrony over millions of square kilometers (Blasius et al., 1999). As a
less glorious, but equally large-scale example, the occurrence of syphilis
was synchronized in the whole of the United States from New York
City to Houston between 1960 and 1993 (Grassly et al., 2005). As a
final example, unconscious synchronization of fine movements during
the steps of the celebrating crowd caused a violent wobbling of the
690 ton London Millennium bridge on 10 June 2000, on the day of its

22Synchrony is also called entrainment, especially in music.
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Fig. 3.9. Synchrony seems to be a joyful phenomenon. It tends to make us
feel stable and safe

opening (Strogatz, 2003). In spite of the last few examples (and Huy-
gens’ despair), synchrony seems to be a joyful phenomenon. It tends
to make us feel stable and safe (where ‘us’ refers to fireflies, crickets,
hares, lynxes and even nickel electrodes – a fine brotherhood, indeed).

Music and learning again. Is the beneficial effect
due to synchronicity? You may remember my remark in Sect. 3.1 that
listening to the right kind of music – I am not referring to quality here,
but simply requiring that it has a pink-noise-type, scale-free structure – may
help your learning abilities. Here I would like to put forward the idea that
the scale-free pulses of the external noise may help neuronal synchronization,
which is responsible for memory formation (Fell et al., 2001). Next time you
forget something and start to scratch your head, think about this. External
noise may help your internal oscillations.

Synchronization is a network phenomenon, not only in the sense that
it requires a network of oscillators to happen, but also in the sense
that it has many properties characteristic of networks. Here are two
examples from among many:

• Similarly to the percolation threshold of networks, synchronization
also has a phase transition. As the difference between the frequen-
cies of different oscillators is decreased below a certain threshold,
all of them will suddenly become synchronized, achieving syntalan-
sis (see Fig. 3.10) (Winfree, 1967). Synchronization has nestedness.
Network elements at all levels may behave as synchronized oscilla-
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Fig. 3.10. Achieving syntalansis, the sync phase transition. The phase transi-
tion of synchronization is shown schematically here. As the difference between
the frequencies of different oscillators decreases below a certain threshold,
they are all suddenly synchronized, achieving syntalansis (Winfree, 1967).
The grey line denotes the frequency difference, while the bold curve illus-
trates the relative extent of synchrony

tors. Cells are synchronized like the neurons in our brain to make
recognition possible. Organs are synchronized to help lampreys and
leeches to swim as well as to produce the peristaltic movement help-
ing our digestion. Finally, organisms are synchronized with each
other (Bressloff and Coombes, 1998; Strogatz, 2003). However, syn-
chronization also has modularity, which means that the synchro-
nized state may only extend to some of the networking oscillators
(Winfree, 1967).

• Synchronization has self-organized criticality. The roughly 10 000
pacemaker cells in the sinoatrial node of the heart can be efficiently
modeled by a network of oscillators, where each of the oscillators
gradually increases its membrane potential and then, after reaching
a threshold, becomes discharged. When the discharge occurs at any
particular oscillator, all neighboring oscillators will become slightly
more depolarized. Mirollo and Strogatz (1990) showed that these
oscillators produce an avalanche as they subsequently become syn-
chronized with one another. The final phenomenon is very similar to
earthquakes or other avalanches discussed in Sect. 3.3. The extent of
synchronization is also important, since disruption of local synchro-
nization prevents efficient relaxation and may cause self-organized
criticality and subsequent avalanches (Ponzi and Aizawa, 2000).
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Synchronization depends on the network properties. Everything
making the network better connected helps synchronization. The sem-
inal paper by Watts and Strogatz (1998) showed that small-worldness
helps synchronization. Actually, small-world topology is extraordinar-
ily effective for this purpose (Barrahona and Pecora, 2002). Small-
worldness reduces the divergence between extremes of the individual
oscillators, and this helps to preserve the synchronized state (Guclu
and Korniss, 2004).

Scale-freeness of the top network has a rather adverse effect on the
extent of synchronization. Hubs connecting many nodes to each other
have to be avoided, since these ‘center’ oscillators interacting with a
large number of other oscillators tend to be overloaded by the traf-
fic of communication passing through them (Nishikawa et al., 2003).
When the hubs of a scale-free network of oscillators were replaced by
triads, the level of synchronization was remarkably increased (Zhao et
al., 2005). Assortative networks, where hubs are coupled to hubs, were
found to synchronize even less well due to the mutually disturbing ef-
fects of the overloaded hubs (di Bernardo et al., 2005). As we have
seen in previous sections, scale-free structure tends to confine the ef-
fects to smaller segments of the network. Here again, small-worldness
and scale-freeness interact to keep a balance of optimal synchroniza-
tion.

Jung revisited: A possible example of
nested sync. The former remark on nestedness brings me to the various
and sometimes rather vague interpretations of sync. In the famous essay by
Carl Jung (1969), synchronicity was perceived as the opponent of “constant
connection through effect” (causality) and meant an “inconstant connection
through contingence, equivalence or meaning”. Among the many examples
Jung gave, I would only list here fulfilled dreams and prayers.23 Thinking
about synchronicity in the context of the present chapter, i.e., the synchronic-
ity of oscillators and networks, many of the Jungian examples can actually be
interpreted, if we suppose that strong synchronization in a given network may
induce a synchronization of the elements of the nested network one level up or
down (called here nested sync). Thus the fulfilled dream Jung mentioned on a
disaster in a remote island may be perceived as synchronization propagation
from the top to the bottom network. Here a synchronization event in the top

23I would like to note here that most of the other examples, e.g., Jung’s extensive
experiments on astrology, are much more difficult to accept in the present context
of nested sync, and in the current state of scientific knowledge.
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network (the simultaneous death of several people on the island) may induce
the synchronization of the elements (neurons) of one of the bottom networks
(the dreaming person) and cause the dream.24 Conversely, a fulfilled prayer
may be perceived as a synchronization propagation from the bottom to the
top network. A high level of synchronization of the neurons in one of the bot-
tom networks may cause a synchronization of the top network and the prayer
becomes fulfilled.25 What do we call the top network in this case? Well, it
depends on your religion! I think, this is the point where I have to remind
you that we are in a triple smiley box, which means that the content is fiction
and not science. However, I have one further remark: an increased coherence
of electroencephalograms (EEGs) has been repeatedly observed during med-
itation (Aftanas and Golocheikine, 2001; Orme-Johnson and Waynes, 1981).
This is by no means a proof for nested sync (no one is able to measure the
EEG-like phenomenon one or two networks higher!). However, it shows that
intensive mental states can indeed lead to more coherent brain functioning.
My last remark is about Mozart. Did the neurons in Mozart’s head know
that they were in sync because the Master had just conceived the Requiem?
Moreover, did the Master know that the Requiem would be in sync with his
own death? It is a bit difficult to grasp trans-network connections, especially
from the bottom network. We have to be patient with the explanations given
by Mozart’s neurons. I hope I have convinced you that you also have to be
patient with my explanations.

My first encounter with nested sync. “Pe-
ter, if you start talking about your fulfilled dreams here, I’m leaving.” Do not worry,
Spite, this dream of mine will never be fulfilled! I just want to offer an expla-
nation as to why I might be so sensitive to the above, rather unusual ideas.
When I was around four, I had a terrible ear inflammation. Suffering unbear-
able pain, an idea suddenly came into my mind: the fact that I had to suffer
had a purpose. Something much bigger was using me to have good ideas, and
it was the unusual intensity that was giving me the pain. I agree that this
may be even less well grounded than any of the ideas in the comment above,
but it worked! When I got to this point, the pain had stopped.

So far I have outlined some of the possibilities for the way synchrony
develops. We have seen that network properties like small-worldness

24If the fulfilled dream is about a future event, well, let’s keep the ‘explanation’
for my next book!

25Actually, it would be very interesting to measure the difference in the synchro-
nization intensity of the affected neurons during an ordinary and an emotionally
involved, intensive prayer.
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and scale-freeness assist synchronization. We even had an esoteric ex-
ample of nestedness in sync. However, in all these examples, sync was
either there or it was not. The question arises as to whether there
are levels of synchronization? Well in fact there are. We have basically
three levels. If synchronization is weak, the frequencies will be uniform.
At the next level, the phases of the waves will also be synchronized.
At the tightest coupling level, the amplitudes of oscillations will also
be the same. How are the various levels of synchronization achieved?
To a first approximation, we should remember Huygens and his wall.
Indeed, there must be an interaction between the individual oscilla-
tors to get them synchronized. How strong should this interaction be?
“I guess we will see your weak links again.” Yes. Fasten your seat belts! The
weak links are on their way.

Strong links lead to amplitude synchrony, while weak links induce
only a weaker, phase synchronization (Blasius et al., 1999). “Well Peter,
your weak links seem to lose out this time.” There is no need for that glori-
ous smile, Spite. Weak synchronization intensity does not mean weak
benefits. Several famous models of synchronization, like the Joseph-
son effect in superconductors, the Winfree model, or the Kuramoto
model use weak links to achieve synchrony (Ariaratnam and Strogatz,
2001; Feynman et al., 1965; Kuramoto, 1984; Strogatz, 2003; Winfree,
1967). Oscillators are not usually identical and their coupling is there-
fore weak. As an example of this, individual hamster clock cells are
very diverse, and their coupling is weak. Hamsters still have a rather
good circadian rhythm (Liu et al., 1997). Moreover, stochastic reso-
nance26 of coupled oscillators is best achieved if oscillators are coupled
by weak links (Gao et al., 2001; Lindner et al., 1995; 1996).

The Winfree and Kuramoto models: Examples of weak-
link-induced sync. The Winfree model describes the synchronization of N
coupled phase oscillators with the formula

θi = ωi +
κ

N

N∑
j=1

P (θj)R(θi) ,

where θi(t) is the phase of the i th oscillator, κ is the coupling strength,
and the frequencies ωi are drawn from a symmetric unimodal density g(ω).
The model assumes that the mean of g(ω) equals 1. P (θj) is the influence
function of the j th oscillator, while R(θi) is the sensitivity function of the

26In stochastic resonance, noise helps in the detection of sub-threshold signals.
For a proper description of the phenomenon, please turn back to Sect. 3.1.
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i th oscillator with respect to the average influence of all oscillators (Winfree,
1967). The Kuramoto (1984) model is a refined model of the Winfree model.
Here the same N coupled oscillators are described by the formula

θi = ωi +
N∑

j=1

κij sin(θj − θi) ,

where the symbols denote the same as above. Both models display synchrony
at relatively low coupling strengths κ.

Proper weights improve the synchronization of scale-
free networks. As mentioned earlier, networks with scale-free degree dis-
tribution generally disturb synchronization. However, if the scale-free degree
distribution is accompanied by a scale-free weight distribution, where the
weights are distributed in such a way that all the nodes receive the same
input signal, the synchronization of scale-free networks is greatly improved.
In fact, this weight distribution corresponds to the minimum cost, which is
related to the total strength of all directed links (Motter et al., 2005).

In summary, we may conclude that there are many examples in which
weak links couple individual oscillators and help them to develop syn-
chrony. Is there any special benefit from synchronization in general,
and weak-link-induced synchronization, in particular? The early work
by Enright (1980) already put forward the idea that coupled oscilla-
tors are more stable. Later it turned out that an optimal level of sync
is the best to achieve the highest stability (Yao et al., 2000). If we
have complete sync by strong links, we have lower stability than with
partial sync by weak links.

Analogy between the optimal level of sync and the no-
tion of local dissipation and global connection. The main message in
Sect. 2.2 was that properly designed networks should keep a balance between
rather free local traffic to ensure the proper dissipation of perturbations and
global connectedness to help system-wide responses of the whole integrated
network. This idea is strongly analogous to the optimal level of synchrony
we observe here. Complete synchrony would help the propagation of per-
turbations in the whole network, leading to a continuous risk of cascading
failures. Zero synchrony would isolate various segments of the network from
each other and prevent system-wide responses.
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How is the ‘extra stability’ of partial sync achieved? For the answer, let
us turn back to the starting point, i.e., to the perturbations. Strogatz
et al. (1992) showed that, in cases where the frequency distribution
of the oscillators is restricted to a frequency interval, the dissolution
of synchrony after a perturbation is slower than exponential. In other
words, partial sync is better for sticking oscillators together. If the
perturbation arrives disguised as a traveling wave, only those oscilla-
tors stay coupled which were coupled weakly (Bressloff and Coombes,
1998). As a third example of the same phenomenon, phase synchrony,
the specialty of weak-link-induced synchronization, seems to be par-
ticularly resistant against the attacks of various perturbations (Blasius
et al., 1999).

Weakly coupled oscillators seem to relax faster. Obviously, if the
coupling is too weak, it becomes ineffective in the sense that extremely
weak coupling between oscillators gives no synchrony at all. However,
weak coupling seems to be quite profitable. If you want to get a stable
joint oscillation, a Winfree syntalansis (1967), then seek weak links.
The following advice emerges: stay away from authoritarian groups
requiring full synchrony. In Sect. 10.3, I describe in detail the study
by Kunovich and Hodson (1999), who showed that after massive stress
(the civil war in Croatia), psychic recovery was better helped by infor-
mal organizations than formal ones. The explanation is rather straight-
forward: informal organizations allowed better sync and faster relax-
ation of the prolonged tension.

Why do we like sync? Synchronization certainly gives us pleasure.
To be honest, I have no idea whether the nickel electrodes, our neurons,
the fireflies or the crickets were happy producing synchrony. Moreover,
it is difficult to measure whether groups of women feel more secure
emotionally when their menstrual cycles are synchronized. However,
when audiences clap in unison (Néda et al., 2000), people make waves
in stadiums (Farkas et al., 2002), a crowd sings the national anthem,
people laugh, or I keep my knees hitting in the same rhythm as my
dog runs when we are out together in the park, there is no doubt that
all these things give great pleasure.

Synchronized laughter quakes. Laughter is a rather
joyful act. We spend countless hours of our life in search of laughter and in-
volved in attempts to make others laugh (Dunbar, 2005). We are not alone.
Even rats laugh – though in the ultrasound region (Panksepp and Burgdorf,
2000). I would like to put forward the idea that laughter is in fact a synchro-
nized self-organized criticality phenomenon. Before we start to laugh, there
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Fig. 3.11. Tensions that any of us are unable to cope with alone are trans-
ferred to others by the sync we all enjoy

is a gradual input of information causing tension, which finally bursts into
laughter. As an example of the gradual input, think about the ‘annoyance’
of repeated unlikely events, or the cognitional tension of an outright absur-
dity. Laughter is certainly a relaxation phenomenon. It would be nice to see
whether the intensity and duration of laughter display scale-free behavior.
However, we seldom laugh alone. Laughter is provoked by others’ laughter in
a rather contagious fashion. Laughter is a very good example of our inherent
love of sync.

Why do we like sync? Sync may give us an additional level of stability
by helping relaxation. Fast relaxation stabilizes systems and sync helps
relaxation. Optimal sync helps local relaxation. Relaxation has been
conditioned to cause joy so that we learn to seek it.27

Let me ask you to take a deep breath, to drink a glass of crystal
clear water, to relax, and most importantly, to think. Is this not beau-
tiful? For our life we need a continuous inflow of energy. However, this
generates ever more tensions, which may cause our death. Relaxation
is indeed a question of life or death for us. This is a formidable task,
but we are not alone! We are in sync. This gives a safety net to all of us.
The tension that any of us is unable to cope with alone is transferred
to others by the sync we all enjoy. The most beautiful moments and
feelings of our life: joy, laughter and happiness are all tied to relaxation
and sync. This is our reward, if we successfully learn about one of the
most general laws nature has yet made for collective survival.

27Relaxation comes only after the sync has been set and an unexpected pertur-
bation is experienced. Therefore it is better to be conditioned by another feeling, joy
to seek the sync, which will ease future relaxations. I will return to the connections
between joy, relaxation and stability in the concluding chapter of the book.
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“Peter! Don’t you think it’s time to put your ideas into practice and stop writing
NOW. Then you can start that well-deserved relaxation?” Spite, it is truly kind
of you to be so considerate about my health, but now you have spoilt
a great moment for me. Here I am, sitting with a glass of crystal clear
water in front of me, with my soul in heaven, and you drag me back
down to Earth. But don’t be sad, Spite. You have only done what
you are supposed to. Returning to your question, believe me, there
are so many exciting thoughts in my mind that if I stopped writing
NOW, I would end up in the madhouse and never achieve any form
of relaxation. Writing is my relaxation right now, and I thank the
publisher and the reader for giving me this opportunity.

The emergent property of human sync.
Superconductivity, heart beat, peristaltic movements and our thoughts are all
emergent properties of sync at the level of the top network. We can recognize
the emergent property if network members are particles or cells. What is
the emergent property when we humans start to make sync? Do the millions
of synchronized exclamations after a goal in the final of the world soccer
championship mean that Gaia has remembered a great joke she heard in the
Cambrian epoch?

In the last few sections we have learned several recommendations about
how to save our networks. We have seen how to discriminate between
good and bad noise. We now recognize the degree of danger if a per-
turbation arrives alone or with a number of other perturbations. We
have learned how to confine relaxation to a segment of the network.
We have studied avalanches, network failures, topological phase tran-
sitions and finally sync. How should we put all this into practice? How
can we construct a network which will resist against all perturbations?
Stay tuned! The next section will try to give a clue.

3.6 How Can We Stabilize Networks?
Engineers or Tinkerers

Network design and network stabilization are engineering tasks. Sta-
bility can be achieved in connected systems by negative feedback, for
example, a typical element of engineered systems. Indeed, highly op-
timized engineered systems display a considerable level of stability.
These systems have many highly optimized feedback regulations called
integral feedback control or more generally, highly optimized tolerance
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(HOT). Modern machines demonstrate a very high level of organiza-
tion. In a Boeing 777, a hundred and fifty thousand different subsystem
modules can be found, piloted by close on a thousand computers. The
final testing of such an airplane generates data almost equivalent to
the human genome every minute (Carlson and Doyle, 2002; Csete and
Doyle, 2002).

However, our sophisticated machines were not the first complex
systems on Earth to show this level of stability. We ourselves are also
pretty good examples of complex and stable networks, and date back
somewhat further in evolution than the Boeing 777. Francois Jacob
(1977) pictured evolution as a tinkerer, “who does not know exactly
what he is going to produce, but uses whatever he finds around” and
“gives his materials unexpected functions to produce a new object”.
Indeed, evolution does not optimize the system in advance making a
blueprint, but assembles interactions until they become good for the
task (Maynard-Smith and Szathmary, 1995). Steven Rose put the same
idea in his Lifelines (1997): “We carry the burdens of the past with
us.”

What are the common features of the engineered and evolutionarily
tinkered systems? Just to name a few of the most important ones: mod-
ularity, robustness, and on the other side of the coin, failure avalanches
(Carlson and Doyle, 2002; Csete and Doyle, 2002). However, there are
major differences between the results of engineering and tinkering:

• Evolution must make all intermediates viable. As opposed to
an evolutionary system, an engineered system has been optimized
for the purpose at hand. In engineering, there is no need to optimize
all predecessors and there is not such a strict requirement for conti-
nuity amongst these predecessors. Finally, the engineered system is
not forced to change by introducing just a few small changes at each
point in its development. Though the concept of punctuated equi-
librium (Gould and Eldredge, 1993) introduced discontinuity into
the evolutionary process, and later a few molecular mechanisms
(Rutherford and Lindquist, 1998; see Sects. 6.2 and 6.3 for details)
were also uncovered to explain jumps in evolution, the required
level of continuity still makes a difference between engineered and
evolutionary systems.

• An engineered system is complicated, while an evolution-
ary system is complex (Ottino, 2004). In the case of com-
plicated systems, the pieces can be disassembled and reassembled
again, and the function of the whole can be guessed quite well from
the functions of the parts. In the case of complex systems (for a
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discussion of complexity, see Sect. 4.3), the function of the whole
is an emergent property of the parts, and in most cases we cannot
make a straightforward guess about the function of the top network
if we only know the function of the bottom networks (modules) in
a piecewise manner.

• As opposed to engineered systems, evolutionary networks
are integrated and their parts cannot be optimized sepa-
rately. In their famous essay against the Panglossian Paradigm,
which considers each part of a complex organism as the result of
evolutionary optimization, Gould and Lewontin (1979) wrote: “Or-
ganisms are integrated entities, not collections of discrete objects.”
Although engineered systems are also integrated, the function of in-
dividual parts in these systems is better described and this function
is usually close to optimal by itself.

• Evolutionary networks have greater designability. Evolu-
tionary networks have a higher capacity for combinatorically differ-
ent setups of their components than engineered networks (Changizi
et al., 2002). This property is also called designability (Tiana et al,
2004).

• The evolutionary design is stable under many conditions.
As a result of the design process, engineering gives stability only
with very finely tuned parameters, while evolutionarily tinkered
networks are stable under a much wider range of initial conditions
(Aldana and Cluzel, 2002).

• Link strength difference between engineered and evolu-
tionary systems. As shown in Sect. 2.4, evolutionary systems
develop a continuous range of interaction strengths between their
parts. In engineered systems, reliability is a crucial factor. Two
parts either interact, or they don’t. Probabilistic, vague, ‘almost’
interactions do not reflect a skillful design. Though interaction
strength can be defined by the duration of interaction, and in this
way engineered systems also contain weak links, link strength di-
versity is rather limited in engineered systems as compared to evo-
lutionary networks.

• The evolving system grows. Finally, an engineered system does
not necessarily grow, whereas the evolutionary system grows by
definition.

What happens if a self-organized system cannot grow?
Is growth arrest a source of aging and death for networks? Is growth arrest a
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serious form of stress which leads to a series of topological phase transitions
of the network (see Sect.3.4), resulting finally in the disintegration of the net
and death? Are we sentenced to grow in running away from our own death?28

Evolution can go backwards. Originally the above list had
an additional point: it was thought that, in contrast to engineering design,
evolution cannot restore information that has already been deleted. In a
way this statement was not true even at that time, since the deleted genetic
information might have been stored in another species, in such a way that
it could be regained. However, the recent paper by Lolle et al. (2005) has
described an even more elegant way to save the blueprint of a good old
design, until the new one proves that it is indeed better. The blueprint is
actually pale-blue here, since the old and discarded genetic information is
saved, not in the form of DNA, but in the form of RNA. The reversion of the
particular gene in the plant Arabidopsis thaliana to the older and discarded
version was as high as 10% in some cases. The process was governed by an
RNA segment which was retro-transcribed to the DNA. The mechanism may
actually be quite general. However, many more experiments are needed to
assess the importance of this non-Mendelian inheritance.

Although I have shown that engineered and evolutionary developed
systems differ in many respects, the contradiction between the engi-
neer and tinkerer types of development is only apparent. In Sect. 9.5,
I show the convergence of the two developmental schemes in highly
sophisticated, modern designs.

28I am grateful to Bálint Pató for these questions, which are related to the
necessity of housekeeping heat (Oono and Paniconi, 1998) mentioned in Sect. 3.1.


