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Network modules help the identification of key transport
routes, signaling pathways in cellular and other networks
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Complex systems are successfully reduced to interacting elements via the network concept. Transport plays
a key role in the survival of networks – for example the specialized signaling cascades of cellular networks
filter noise and efficiently adapt the network structure to new stimuli. However, our general understanding of
transport mechanisms and signaling pathways in complex systems is yet limited. Here we summarize the key
network structures involved in transport, list the solutions available to overloaded systems for relaxing their
load and outline a possible method for the computational determination of signaling pathways. We highlight
that in addition to hubs, bridges and the network skeleton, the overlapping modular structure is also essential
in network transport. Path-lenghts in the module-space of the yeast protein-protein interaction network
indicated that module-based paths may cross fewer modular boundaries than shortest paths. Moreover, by
locating network elements in the space of overlapping network modules and evaluating their distance in
this ‘module space’, it may be possible to approximate signaling pathways computationally, which, in turn
could serve the identification of signaling pathways of complex systems. Our model may be applicable in a
wide range of fields including traffic control or drug design.
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1 Introduction

The network concept is successfully applied to reduce complex systems into a set of interacting elements
connected by links to examine, understand and predict the topology, dynamics and emergent properties of
the system [1–4]. In most networks the elements are autonomous agents, which not only develop direct in-
teractions via links, but also establish long-range indirect interactions via various transport processes. The
necessity of a transport process is usually evoked by a need for communication (social and telecommuni-
cation networks [5, 6]), transfer of resources (logistic networks, power grids [7, 8]) or regulation ensuring
a fast, magnified and efficient response (signal transduction networks [9, 10]). The transport process is not
only an emergent property of the network, but also a significant organizing force behind the structure and
dynamics of the network. Links of the network may emerge in order to serve the transport process [11] and
disappear later, if their existence is not required anymore or becomes even harmful [12].

Network signaling may be considered as a highly specialized case of transport. Signaling of cellular net-
works is a system level response to an incoming stimulus and is an extremely selective behavior fine-tuned
by evolution. It efficiently filters noise-like stimuli, while quickly develops complex signaling cascades in
response to a recognized stimulus [13, 14].

How does a network learn to discriminate between signal and noise? Our own studies [14–17] may
help us to describe a common scenario: when an unusual signal arrives, which is strong and persistent
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enough to modify network behavior, the network slightly or profoundly disassembles: as a major process
network modules (groups, communities [3, 18]) become loosely attached with a decreased overlap. When
the stimulus is over, the network reassembles again. In this phase a large number of inter-modular contacts
become re-established. However, these inter-modular contacts will not be exactly the same as before the
stimulus: by developing a structural ‘imprint’ of the signal, the complex system has now a memory, it
learned, on one hand which links may be more effective to dissipate the stimulus most efficiently, and
on the other hand, which links are disturbing this process. If a similar stimulus arrives regularly (or the
stimulus is large enough that all networks which were unable to learn the reorganization described above
will disassemble and die) than the newly selected pathway may become dominant and may behave as a
signaling pathway from then on.

In Sect. 2 we enumerate the main properties differentiating transport processes and consider optimality
criteria with an emphasis on network throughput, then summarize the basic structures utilized by the net-
work for efficient transport and filtering, namely the network skeleton, hubs (highly connected elements),
bridges (elements connecting sparsly inter-connected network segments) and network modules (commu-
nities). In Sect. 3 we propose a method for reconstructing simulated and signaling pathways based on
overlapping network module information. In Sect. 4 we summarize our findings and conclude.

2 Characterization of network transport

As described in Table 1 summarizing the main properties differentiating transport processes, the goal of
the transport process is usually related to the survival of the system defining the network and therefore
transport is related to the survival of the network as a connected graph with a large giant component.
Transport may mobilize resources or information between network elements which are then used for the
benefit of the system described by the network. For example, a network element in need may propagate a
request message and other elements may send resources in response – this signaling scenario could emerge
without network elements having attributable intentions or desires. ‘Transport-provoking’ cooperation may
emerge through evolutionary mechanisms like signaling games [19]. The recently introduced protein games
might also play a similar role in case of amino-acid networks [17, 20].

Table 1 Main properites of transport processes

Property Description

Purpose Goal of the transport process, usually related to the fitness or
survival of network elements and the network as an entity.

Sources and sinks Specific network elements may be identified as the source or
sink of a given transported quantity.

Information need Routing mechanism of network elements determining which
neighboring element will they forward a received quantity to
may require either local, global or intermediate (mesoscopic)
knowledge about the network.

Determinism Routing may be deterministic or stochastic.

Adaptiveness Routing may (adaptive process) or may not (static process) be
affected by the dynamic properties of the network.

Information preservation Quantities transported may remain unchanged, suffer distortion
or even get lost.

Time Transport may be a discrete- or continous-time process.
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As for routing, local mechanisms tend to be stochastic because they lack extended information and
therefore cannot be certain about the effectiveness of any single deterministic choice, while informed global
routing mechanisms usually favor more deterministic approaches. Cellular networks exhibit local routing
property, as the transmitted signal can be represented by the propagation of conformational changes of
interacting proteins, and such changes may be evaluated locally via means of induced fit, conformational
selection or protein games [17, 21, 22].

Let us take a detour and examine the optimality criterion of Table 2, which lists common expectations
originally set towards computer networks [23]. It should be noted that an universally applicable set of
optimality criteria does not exist, mainly due to that different optimality criteria are usually in conflict
with each other. Conventional optimality criteria include low duration of delivery, short delivery paths or
high transport throughput. In Box 1 we summarize a simple, yet descriptive model of network transport,
which is sufficiently abstract not to distract attention with implementation details, but still lets us draw
conclusions about the network transport processes focusing on the criteria mentioned above [11, 24–26].

Table 2 Expectations toward transport processes

Expectation Description

Soundness Operation of the transport process should strive to achieve and
maintain its goal.

Simplicity Among transport processes of similar performance the one with
the simplest mechanism is preferred.

Robustness The transport process should resist network failures, or at least
degrade gracefully, proportional to network load or damage.

Stability Operation of the transport process should lead to an equilibrium
state of the network under stable circumstances.

Fairness The transport process should strive to satisfy the transportation
needs of all network elements equally.

Optimality Operation of the transport process should be optimal for a set of
criteria.

For example, in cell signaling networks short delivery paths would be preferred to reduce the distor-
tion or loss of information (and indeed, most cellular networks are small-worlds [2, 4, 8]), while higher
throughput would let the signaling network handle more stimuli simultaneously. Unfortunately shorter de-
livery paths increase the load on network elements of high centrality, and this, in turn, lowers the maximum
possible throughput. As the example described here shows a transport process may conform to different
optimization criteria to some extent but not all of them simultaneously. Moreover, if the satisfaction of
multiple optimization criteria involves an increased complexity of the transport process, this increased
complexity may hurt our expectations of simplicity, robustness or stability.

Knowing that the topology of any network sets an implicit upper bound on the maximum possible
network throughput [27], it is interesting to investigate what kind of measures could the network utilize –
apart from rearranging or coarsening its link structure [12, 28, 29] – in order to relax overloaded elements
and prevent congestion.

First, network elements may exhibit adaptive behavior of taking into account the load of other elements
in their routing mechanism. This behavior is exemplified by the multiple copies of protein isoforms in
critical positions of cellular networks, such as the ‘critical nodes’ defined by Kahn and co-workers [30].

Second, network elements may resist to transport more than a given quantity, resulting in a filtered,
faulty transport process but relaxing the load on the elements of the network. It is not surprising that
network elements and structures of high centrality (having consequently a high load) are natural candidates
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Box 1 A simple model of network transport

In the original model of [11] information packets denoted aik are traveling from the source network
element i to the sink network element k in the network G = (N, E). In each discrete timestep first
R = ρN new packets aik are generated with i and k chosen randomly and are added to the pool of packets
at i denoted Qi. Then for each element u a count of packets Cu = C are randomly removed from Qu and
forwarded according to the routing strategy, or to the sink k if it is neighboring u (and thus the packet is
removed from the network). Fig. 1 shows an example scenario.

This discrete transport model is very flexible: First, both sources and sinks can be identified, however
this is not strictly necessary for its application. Second, depending on the applied routing strategy,
the information need may be either local, global or mesoscopic, transport may either be stochastic or
deterministic, information may be preserved or lost with some probability at each step of routing (see
Table 1).

If the routing strategy is static and Markovian (the packet routing is independent of previously visited
network elements), then both the expected path length and the expected load Bu of any element u (called
effective betweenness) can be analytically derived. Moreover, if we define congestion as a state where exists
an element u in the network with the packet pool Qu growing faster than the processing capacity Cu of
that element, then the throughput of the transport process can be characterized with the maximum R = Rc

value without congestion, given by Rc = min {CuN(N − 1)/Bu}. Note that if any Cu = C then the
network throughput is capped by the element of maximum effective betweenness.

Fig. 1 An example scenario for the simple model of Box 1. a) The network element A and its neighboring
elements B, C and D are shown. The packet pool of element A is shown containing a packet denoted
B–C with source element B and sink element C. b) Generation step: The new packet A–D is generated at
element A with random sink element of D. c) Transport step: A random packet (now packet B–C) is selected
from the packet pool of A and becomes forwarded according to the routing mechanism. As packet B–C
reaches its sink element C, it will disappear from the network.

for such filtering, because these elements of high centrality are expected to constitute a network skeleton
or superhighway of transport [31] and thus are able to filter excessive amounts of transported quantities.
Generally, congestion affects most the communication boundaries, such as central hubs of hierarchical
networks or overlaps of network modules, both providing bridges between different network segments [32].
If we define modules as having more intra-modular links than inter-modular [33], then modules themselves
also act as noise traps with noise rather circulating inside the module and eventually getting dissipated
instead leaving the module.

Third, the routing mechanism may decide to sacrifice certain optimization criteria in favor of network
throughput by deliberately utilizing alternative or back-up routes to some extent in parallel with the network
skeleton. This procedure is not necessary adaptive, for example (overlapping) network module information
may serve as a basis for static routing if known [34, 35].
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Fig. 2 An illustrative network with three overlapping modules (marked with ellipses) is shown. Small
circles denote network elements, links are not visible. One experimentally observed and two simulated
pathways connecting a source element (SO) with a sink element (SI) are shown: the actually observed path-
way (continuous line), a module-based shortest path with distance metric calculated in module space as
described in Sect. 3 (dashed line) and a traditional shortest path (dotted line). Thin dotted lines indicate the
distance between elements of simulated pathways and the observed pathway. In the scenario of the illustra-
tive figure, the module-based shortest path approximates the observed pathway better than the traditional
shortest path.

3 Simulated pathways on overlapping modules

Recent advances in network module identification methods are not only able to assign elements to multiple
overlapping modules but also provide metrics describing membership strength of any elements to different
modules [18,36–39], effectively locating network elements in the M -dimensional module space, M being
the number of modules in the network. Therefore it is possible to evaluate a structural compatibility be-
tween network elements based on the distance of elements in the module space. This fact, combined with
the observations mentioned in Sect. 2 that 1) propagation of transmitted signals in cellular networks can
be evaluated via local compatibility metrics between network elements and 2) information on overlapping
network modules may serve as a basis for routing, raises the question if, module-based simulated pathways
between network elements are correlated to actual pathways experimentally observed in the network.

In order to decide, if the observed and simulated pathways are correlated, one may compare observed
pathways p, traditional shortest paths p̂SP and module-based shortest paths p̂MSP : in the latter case the
distance dm

u,v of network elements u and v is the Manhattan distance
∑

k |bu[k] − bv[k]|, where bi is a
vector of M components with bi[k] being the membership strength of network element i to the module k.
Membership strength is a modularization method-dependent measure characterizing the affinity of network
element i to be part of the module k – for example, the sum of the components of the ‘fuzzy membership
degree’ vector of a given element is unity in [38], while in the ModuLand framework a custom centrality
measure (the landscape centrality) is calculated for each element, and this centrality value is distributed
between different network modules in the ratio of the membership affinity of the given element to the
respective modules [15, 37].

To compare an observed pathway p with a simulated pathway p̂, one may calculate the distance d(p, p̂)
by summing the d(up̂, p) and d(up, p̂) distances between elements uq ∈ q and the respective pathway,
where d(uq1 , q2) is the minimum distance between element uq1 and any element w ∈ q2, calculated by
Dijkstra’s algorithm of shortest paths. Finally the normalized d′(p, p̂) is introduced as d(p, p̂)/ |p|, where
|p| denotes the number of elements in p. Fig. 2 shows an illustrative scenario of pathway comparison.

If d′(p, p̂MSP ) would prove to be generally lower than d′(p, p̂SP ), then we could conclude that module-
based shortest paths are better approximators of module-dependent network pathways than shortest paths.
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(a) (b)

Fig. 3 Histogram of the module-space lengths of a) shortest paths and b) module-based shortest paths
between all pairs of the 2,444 network elements of the main component of the protein-protein interaction
network of S. cerevisiae [40]. The significant difference of distributions (p < 0.01, Wilcoxon matched pairs
signed rank test) means that traditional shortest paths are not shortest paths in the module-space, possibly
crossing more network module boundaries than the possible minimum. Overlapping modular structure of
the network was uncovered using the NodeLand and TotalHill procedures of the ModuLand modularization
method [37] and module-space length of paths were calculated by evaluating the distance of network ele-
ment pairs via the dm

u,v metric (see Sect. 3), where the ModuLand landscape centrality of a given element is
distributed between the components of the module membership strength vector of the given element in the
ratio of the membership affinity of the given element to the respective modules. For each pair of elements a
single shortest path was randomly chosen.

As a preliminary investigation we applied a reverse approach, and compared the module-space lengths
of the shortest paths and the module-based shortest paths between all pairs of network elements of the
protein-protein interaction network of the yeast, S. cerevisiae, as compiled in [40], via evaluating the dis-
tance between elements u and v using the dm

u,v measure introduced above, and calculated based on the
overlapping modular structure of the network as uncovered by the NodeLand and the TotalHill procedures
of the ModuLand modularization method described in [37].

Naturally, the module-space length of a module-based shortest path between elements i and j is a lower
bound for the module-space length of any shortest path between the said elements, but Fig. 3 shows that
the distribution of module-space lengths of module-based shortest paths gets concentrated on significantly
lower values than the distribution of module-space lengths of shortest paths. This means that traditional
shortest paths are not shortest paths in the module-space, possibly crossing more network module bound-
aries than the possible minimum, which in part explains the negative impact of traditional shortest paths on
network throughput as described in Sect. 2. It must be noted that our comparison did not take all possible
shortest paths between a given pair of network elements into account. Instead, for each pair of elements a
single shortest path was randomly chosen, which could introduce a sampling bias into the presented result.
This uncertainty remains yet to be resolved in subsequent studies.

Modules often correspond to various functions of the system coded by the network. Therefore, the
modular analysis described above may also help us to determine key signaling pathways as inter-modular
routes. This becomes especially likely, if we take into account the hierarchical structure of modules, where
modules of the original layer are represented as elements of the next layer of hierarchy [35, 37].
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4 Summary

We have described that transport processes are significant organizing forces of the network structure and
dynamics, and considered a mechanism of network signaling filtering noise and adapting to newly recog-
nized stimuli. We investigated the main properties differentiating transport processes, listed expectations
towards transport processes and noted that an universally applicable set of optimization criteria does not
exist due to criterion-conflicts. We examined the limits of optimizing network transport for highest possi-
ble throughput in the framework of a simple, yet descriptive model of network transport and described the
ways how different network structures could cause, and, interestingly, also relax congestion.

We highlighted the role of overlapping network modules and proposed that exploiting the information
on overlapping modules, for example the distance between network elements in the ‘module space’, may
help the analysis of routing mechanisms. Finally, we asked the question if module-based simulated path-
ways between network elements are correlated to real pathways observed in the network, and suggested
a method for determining the answer. Our preliminary results in the yeast protein-protein interaction net-
work suggested that module-based pathways may cross fewer modular boundaries than shortest paths,
which may have a significant impact in stressed and/or noisy cells and other complex systems.

If module-based pathways would describe well the real, observed pathways, the identification of key,
signaling pathways of complex systems would become possible using higher layers of the hierarchical
modules. Such knowledge could be utilized in a wide range of fields including traffic control or drug
design.
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[17] M. A. Antal, C. Böde, and P. Csermely, Curr. Protein. Pept. Sci. 10, 161–172 (2009).
[18] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature 435, 814–818 (2005).
[19] A. Zahavi, J. Theor. Biol. 53, 205–214 (1975).
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